
 Advanced search

Linux Journal Issue #119/March 2004

Features

Delivering Effective Presentations with OpenOffice.org's Impress by
Rob Reilly

Make a professional case for your next Linux project.
Eleven Tips for Moving to OpenOffice.org by Bruce Byfield

Switching office suites is easier than it looks.
Renaissance: a Cross-Platform Development Tool for Linux and Mac
OS X by Ludovic Marcotte

Use this XML-based tool to build the same software on Linux and
Mac OS X.

The OASIS Standard for Office Documents: How All Users and
Developers Can Benefit by Marco Fioretti

Lock-in is so 20th-century. A common file format lets apps
compete on features and ease of use.

Getting the Most from XMMS with Plugins by Dave Phillips
The standard Linux music player has some little-known but
powerful features.

Indepth

Manipulating OOo Files with Ruby by James Britt
XML and Ruby let your scripts and your office suite handle the
same files.

GUI Scripting with Tcl/Tk by Derek Fountain
Get an interface working quickly with the old-school tool for
rapid app development.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7158.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7102.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7102.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7159.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7159.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7273.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7236.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7225.html

Building Panoramic Images in The GIMP by Andrew Burton
Show off a giant view of your next vacation spot with some
careful shooting and this powerful photo tool.

Designing Tip Windows by Hugh Fisher
Use effective tips to teach users your application without
annoying them.

Fast Convenient Mail for Travel: OfflineIMAP by John Goerzen
Get the reliability of server-side mail with the speed of local
folders.

Embedded

Power Management in Linux-Based Systems by Srivatsa Vaddagiri,
Anand K. Santhanam, Vijay Sukthankar and Murali Iyer

How the kernel makes your laptop battery outlast your next
flight.

Toolbox

At the Forge Bricolage Templates by Reuven M. Lerner
Kernel Korner What's New in the 2.6 Scheduler by Rick Lindsley
Cooking with Linux Can't Get Enough Desktops! by Marcel Gagné
Paranoid Penguin Application Proxying with Zorp, Part I by Mick
Bauer

Columns

Linux for Suits The Fracturing Desktop by Doc Searls
EOF Lest We Forget, Why Open Source Wins by Chris DiBona

Reviews

Linux Power Tools by Suresh Krishnan
EmperorLinux Meteor Notebook by Tony Steidler-Dennison

Departments

Letters
upFRONT
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7295.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/6659.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7232.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/6699.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7248.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7178.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7298.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7296.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7299.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7207.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7096.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7107.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7270.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7310.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/7312.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Delivering Effective Presentations with OpenOffice.org's

Impress

Rob Reilly

Issue #119, March 2004

Choosing the right presentation software is only the beginning of preparing an
effective talk. Here's how an experienced tech speaker uses OpenOffice.org to
get the message across to the audience.

As a Linux techno-guru, you recently have been volunteered to give a talk at a
high-profile industry conference. Your stomach starts to churn as you realize
that you might have to learn Microsoft PowerPoint. Oh, the humiliation! Fear
not, OpenOffice.org Impress runs on your Linux box. Think how calm you'll be
in front of all those people knowing that your trusted old friend Linux is right
there at the other end of your wireless mouse.

 It's All Showbiz

Technical presentations are about transferring knowledge to the audience. The
content is the show, you are the showman and the presentation technologies
are the showbiz tools. Laptops, graphics, projectors, lights and presentation
software all serve to organize the show and focus audience attention on the
content.

As a techie myself, I know that technology is a siren call to be explored and
fiddled with. We have to resist the temptation to tweak for now, though; we
have a show to put on. Here, I discuss the basics of building a slideshow with
OpenOffice.org Impress and a few ways to get your show organized. Then, I
throw in a few power tips, so you will look like a pro in front of your adoring
audience.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 What Is Impress?

The OpenOffice.org Impress package lets you quickly construct and deliver an
electronic slide presentation. With it, you can add graphics, make handouts and
convert your slides to Web pages. It can do all the jobs needed to put on a great
presentation. You simply add your content and personal style.

Loading OpenOffice.org Impress onto your Linux machine is simple. You might
have OpenOffice.org already installed. Otherwise, go to www.openoffice.org
and download the latest version; version 1.1 is around 77MB. The .gz file can be
unzipped and put in its own directory. Then, run the setup file, fill in the blanks
and you're ready to go.

You don't need a 3.0GHz laptop to run Impress. It runs fine on old 166MHz
Pentium desktops with an 8MB video card and KDE or FVWM2 X window
managers.

 Quick Presentation Creation

Fire up OpenOffice.org Impress and take a spin through the program. Let's first
look at some basic functions and then come back and get our content
organized. The easiest way to start a new presentation is with the AutoPilot
feature, which provides a basic beginning framework. Graphics, text, animation
and formatting can be added after you enter your content.

To build a presentation, click File→New→Presentation. In the next window,
select Empty Presentation and then click Next. This next window lets you
choose backgrounds. Click Next for a window that lets you choose slide
transitions. Our first presentation doesn't have any transition effects and is
controlled manually by the Page Up/Page Down keys or the mouse, so click
Create. The Insert Slide window should appear here. It lets you select the slide
layout. For our first sample, use the layout style named Title, Graphic, Text.
Highlight that layout, click OK and watch your first slide appear (Figure 1).

http://www.openoffice.org
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f1.large.jpg

Figure 1. Building a presentation starts with the first slide. Here is the main Impress window.

This first slide offers you a place to enter your slide title, a picture on the left
and your bullet points on the right. Using the default font size, the bullet point
area forces you to work with only four or five lines. That's good because many
experienced presenters put too much information on a slide. Use the slides and
bullet points for a prompt and tell the story in your own words. By doing so,
your audience sees you as an expert who thoroughly knows the subject.

The exercise of creating the first slide should take about 5–10 minutes. I
intentionally went through the entire process because I wanted to get you right
into the Impress program. Knowing how to build a basic slide provides you with
the understanding necessary to organize your talk and build subsequent slides.

Forget about outlining your talk on paper; use Impress itself. Brainstorm your
ideas logically, using the titles as main topics, each topic being a new slide, and
put three or four bullet points under each topic for the details. You can
rearrange and edit them after you've laid out all the material.

 Adding Slides, Text and Graphics

Adding a slide is easy. Start by clicking Insert→Slide. Select the type of slide and
then click OK. Your slide shows up on the screen, and you can enter text or
whatever you want. To duplicate the last slide, click Insert→Duplicate Slide. Now
you're ready to add some text. Click the Text icon on the upper-left edge of the
main Impress design window. Move the cursor to the slide and left-click a
location. Now, type in your text. You can move the text to another location by

https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f1.large.jpg

dragging the middle of the text box. To resize the text, highlight and choose a
new size in the point size space, at the top of the design window.

Adding graphics is equally as easy. Click Insert→Graphics, and select the graphic
file to use. Click OK and the file is pulled into the slide. Resize the graphic by
grabbing a side and moving the edge. To move the graphic, grab it in the
middle and reposition to the desired location.

 Making Slide Handouts and Notes

Handouts are groups of slides in a book form, with four slides per page by
default (Figure 2). When printed, they can be stapled together or put in a binder
and given to audience members before the show. For technical presentations,
the handout allows the audience to take notes on a picture of the slide being
discussed.

Figure 2. Previewing Handouts, Four per Page

To create handouts, switch to Handouts Mode by clicking the Handouts View
icon along the upper right-hand window slidebar. Print the handouts by clicking
File→Print→OK. Your entire presentation is printed with four slides per page.

Presentation notes add information that you or the audience find useful, but
they don't show up when you run the slideshow. Print off a copy of the notes
on paper if you have a big presentation and need some additional prompting.

To add a note to a slide, switch to Notes mode by clicking the Note View icon
along the upper right-hand window slidebar. Select the Click to add notes

https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f2.large.jpg

section at the bottom, and enter any information you like. The slide then is
displayed in the top part of the view (Figure 3). Finally, click the Slide View icon
(above the Note View icon) to return to your slide, minus the notes.

Figure 3. Adding Speaker Notes in the Notes View Screen

 Running the Presentation

Naturally, you'll want to rehearse your masterpiece, once you've finished it. You
always should practice your presentation before the main event. Switch to full-
screen mode and page through your presentation with the Page Up/Page Down
keys or the mouse buttons. Click the Start Slide Show icon on the right side of
the windows slidebar (below the Note View icon) to get into Slide Show mode.
Press the Esc button to return to the Impress Drawing View mode.

 Converting Slides to Web Pages

Creating and delivering your presentation to your audience has been our focus
thus far. But, why not provide the slides to your audience on a Web page (for
review later) and look like a real professional speaker? By directing your
audience to your Web pages, you also are able to show them your company
information, your bio, other presentations and whitepapers and Web articles.
Nothing makes a speaker more credible than providing valuable information
and services to his or her audience, even after they leave the talk. That little
extra effort of putting your presentations on your Web site can set you apart
from the small-time tech speaker.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f3.large.jpg

OpenOffice.org Impress makes it easy to set up simple Web pages based on
your slides. Begin by opening your presentation in Impress, and click
File→Export. Select the working directory for the HTML and graphics files. Next,
enter the filename of your main HTML page (without the .html extension) and
click Export. On the Assign Design screen, select Next. On the Publication Type
screen, select Next. On the next screen you can save graphics as JPEGs, so
select Resolution medium—600×800. Fill in the author, e-mail, home page and
information on the Information On The Title Page screen. Then, select Link to
Original Presentation, and click Next. Choose the types of buttons you want for
navigation around your pages and click Next. On the Color Selection screen,
select Create. Finally, you can save the HTML design you created with a name
on the Name HTML design screen. Save it and you're done.

You now have a cool set of basic Web pages that showcase your slides. The title
page carries your name, e-mail, Web site URL and additional information
(Figure 4). There's also a link to the original Impress presentation.

Figure 4. The main Web title page includes links to other relevant information.

To look at your handiwork, go to the working directory and open the HTML file
that you named when you first exported your presentation (Slide 1 example—
see Figure 5).

https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f5.large.jpg

Figure 5. Previewing the Web Version in a Browser

Once you're satisfied with the look of the Web pages, upload the whole
directory—don't forget your original presentation or .sxi file—to your main Web
site. Add a descriptive link to it from your main page and then give the URL to
your audience. Check the presentation pages on your Web site after uploading,
of course, to make sure everything is there and correct.

 Your Time in the Spotlight

There are two pre-presentation tasks that you must do to ensure a great
presentation. You are going to be in front of people because you are the
subject-matter expert, but relax and have fun as an entertainer—make it
enjoyable. Second, end your presentation with a call for action, something like
“Now go try Impress”, instead of simply saying “thank you” and smiling at all
that thunderous applause.

Unless you are an extremely experienced speaker, do a full rehearsal at least
twice before doing your live talk. By rehearsal, I mean set up a room, your
laptop, the projector and go through the whole presentation in real time. Don't
be afraid to use a stopwatch, as you need to be absolutely sure you can fit your
presentation into the allotted time. You probably will have some editing to do.
The best idea is to start putting your show together as soon as you get the
assignment. Nothing messes up a show as much as going overtime or not
covering all your material. Plan for contingencies; for example, if the previous
speaker went long, what will you do?

https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7187f5.large.jpg

Also, arrive early at your venue to set up the equipment and room the way you
want them, and ask the event staff to help you. Test your laptop with the
projector at the venue before the presentation. Finally, pack everything you
think you might need, including transparencies and extension cords, just in
case.

 Wrap Up

Technical presentations can be fun and profitable. Use Impress on your Linux
laptop and enjoy being in the spotlight. Plan ahead, make sure you rehearse
enough and stay on time. Good luck!

Rob Reilly (robreilly@earthlink.net) is a technology writer and speaker whose
articles appear in LinuxToday.com and PC Update magazine. His “Impress-ive
Presentations” seminar covers OpenOffice.org Impress and technical speaking
in greater detail. Visit his Web site at home.earthlink.net/~robreilly.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:robreilly@earthlink.net
http://home.earthlink.net/~robreilly
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Eleven Tips for Moving to OpenOffice.org

Bruce Byfield

Issue #119, March 2004

Replacing a complicated piece of software like an office suite can be a major
undertaking. But, if you apply a few simple rules to make sure your needs are
met, you'll be ready to be productive on the new software right away.

For the past 18 months, I've been badgering people to try OpenOffice.org
(OOo). Slowly, I've come to realize that talking about free software isn't enough.
The problem isn't that people don't like the idea of free downloads or of joining
a project and having a voice in its development. After all, what's not to like
there? The problem is that being sold on free software rarely is enough to
guarantee a smooth transition to OpenOffice.org.

What follows are suggestions I've formulated for making the switch. Even the
most open-minded people usually have assumptions to discard. They still have
preparations to make and features to try. Most of all, they have some hours to
log before they really can decide whether OpenOffice.org is right for them.
Nobody can help an individual or an office switch if curiosity or a willingness to
explore is missing, but if you pay attention to the tips that follow, you should be
able to remove much of the pain from the process.

1. Don't Expect Features to Be Missing

People always say, “I'd love to use OpenOffice, but...”, and then they name a
feature they can't live without. If they've glanced at OpenOffice.org, they might
claim their must-have feature isn't there. Most of the time, I can respond by
telling them where to find the feature, and they fall into an embarrassed silence
and change the conversation.

Sometimes, this missing must-have response is sincere, but more often it's an
excuse. Either way, I suspect, the assumption behind it is that free software
always is inferior to its proprietary equivalent. When a casual search doesn't
immediately unearth the feature, this prejudice is reinforced.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Even if the assumption were true, and Linux, Apache, GIMP and Mozilla users
all know that it isn't, the assumption wouldn't be true for OpenOffice.org.
Although at the time of this writing OOo is at version 1.1, StarOffice, its Sun-
owned predecessor, has a longer history than people think. In fact, the first
version of StarOffice was a DOS word processor released in 1985. With two
decades of development behind it, the OpenOffice.org code is mature and
mostly complete.

Admittedly, other word processors do have features OpenOffice.org lacks. It
doesn't have MS Word's grammar checker, WordPerfect's Reveal Codes feature
or FrameMaker's master pages. But, OOo has features these rivals don't.

The point is, there's no need for a pessimistic view of OOo's features. Usually,
you can be optimistic and assume the feature is somewhere in the menus. It
may not be in quite the same form with which you are familiar—for example,
OOo's outlining tool functions quite differently from MS Word's—but odds are
you can find it in some form, however mutated.

 2. Don't Expect Features to Be in the Same Place

No doubt about it, the OOo interface is similar to MS Office's. The general
menu structure often is identical, down to the confusing placement of
Configure and Options in the same menu.

This similarity between interfaces can ease the switch to OOo, but it can be
misleading, too. In places, OOo has cleaned up and rationalized the MS Office
menu structure. Tables, for example, do not rate a separate menu in OOo; they
are placed in the Insert menu instead. At other times, the same feature has a
different name: MS Word's Autosummary, for example, is AutoAbstract in OOo.

In other words, OOo is a mixture of the familiar and the new. Fortunately, basic
functions usually are in their familiar places, so unsophisticated users are
unlikely to get lost. However, if you're an advanced user, you may need to be
more flexible. If a tool isn't where you expect it, think about what other menu it
might be under or what else it might be called. If your imagination fails, look at
the MS Office Feature comparison in the Help files, or look at my more detailed
comparison at www.raycomm.com/techwhirl/magazine/technical/
openofficewriter.html. In most cases, you should find what you need.

 3. Don't Expect to Need Training

Even though you may stumble over the placement of some tools, you probably
don't need a long transition period before you or your company can use OOo
productively. Most likely, the transition can be completed in well under a week.
Basic users can make the switch easily because they use a word processor as

http://www.raycomm.com/techwhirl/magazine/technical/openofficewriter.html
http://www.raycomm.com/techwhirl/magazine/technical/openofficewriter.html

though it were a typewriter. If they want to italicize a word, they don't use the
Emphasis character style. Instead, they highlight the word and click the italic
icon. If they decide they would rather use a bold font to emphasize words, they
go through their document and change the formatting on each word
separately.

The basic methods are not efficient ways to use any word processor, let alone
OOo. But, people who work in this way use only a small set of tools. In OOo,
these features generally are where such users expect to find them. Character
and paragraph characteristics, for instance, are found in the Format menu or
on the toolbar, and the spell checker is in the Tools menu. The transition to
OOo may be an ideal opportunity to learn more, but meanwhile, users can
complete their daily work with almost no interruption.

Advanced users may take a day or two longer to adjust. However, in the same
way that knowing one language can help you to learn another one from the
same region, knowing one word processor helps advanced users learn a
different one. Advanced users know what to expect, and they typically have the
confidence to search for it on their own. As a result, advanced users shouldn't
need to be trained on OOo, either—they can train themselves.

 4. Don't Rely on Import/Export Filters for Exchanging Files

At first glance, OpenOffice.org looks to be ideal for exchanging documents with
other office suites, especially MS Office. Several MS formats are available when
saving a file, as is a batch converter (File→AutoPilot→Document Converter).
Moreover, in Tools→Option you can set OOo to save to MS formats by default
and to preserve the VB scripts it can't use. What more can you need? Patience,
for one. Truckloads of spare time, for another.

The truth is, there never has been a completely reliable import or export filter
in any office suite. Chances are there never will be. If there is, my money is on
cross-compatibility between OOo, KOffice and/or GNOME office. These formats
are all open source, so at least the development time will be shorter. But, even
with open-source formats, filters are going to cause problems for the
immediate future.

Why? For one thing, writing filters is an intensive and unglamorous job. For
proprietary companies, making the perfect filter is too expensive—aside from
the fact that they don't want you using rivals' software. For free software
developers, more interesting projects always are available. Besides, the people
who need filters mostly are not developers, so developers are less likely to see
the need for them.

Just as importantly, many filters involve proprietary formats. This means
developers need to do reverse engineering, a difficult, time-consuming and
sometimes legally risky process. Filters for MS Office, the main concern, are
especially difficult because the format often changes and may not be even
backwardly compatible with earlier versions of itself.

That said, OOo's native XML format makes writing filters easier, and its MS
Office filters are among the best I've seen. Yet even these filters are far from
perfect, and users who rely on them should reconcile themselves to a regular
dose of manual reformatting.

If you insist on using other office suites with OOo, try to limit the editable
documents exchanged to short, simply formatted documents. Search OOo Help
for “About Converting Microsoft Office Documents” to see a list of elements you
should avoid. For those elements you do use, you can improve the results if
you use only styles and ensure that both office suites have access to the same
fonts. Even then, you can expect anything other than the simplest bullets to be
garbled. You might consider making a list of allowable formatting to minimize
problems.

If users of other office suites don't need to edit a document, select File→Export
as PDF and send it as a PDF file. PDF files are close to an open standard;
therefore, this is one filter on which you can rely.

The best format solutions for exchanging editable documents between office
suites probably are HTML or Simplified DocBook. Both can be viewed in
modern browsers, and they can be opened as text files in word processors, if
nothing else. Better yet, get your company or community using OpenOffice.org
by itself. You still may need to share documents with outsiders, but your daily
life will be simpler.

 5. Make a List of How to Do the Basic Functions That You Need

Before you switch to OOo, make a list of the basic tasks you or your division
does in an office suite. Try to keep the list to less than 20 tasks. Then spend half
an hour experimenting or browsing the Help section of OOo. Write down how
to do these tasks on file cards and distribute them to everyone. As each person
becomes comfortable with the basic tasks, replace the first file cards with
instructions for less common tasks. In days, or even hours, you should find that
no one needs to use the cards.

 6. Use the Available Help

OOo comes with a fully developed help system. In earlier versions, the help files
often lacked context and gave circular definitions of features. As of version 1.1,
though, the Help section actually has become an asset instead of a formality.

Sometime early in the transition, have everyone read the first four links on the
Welcome to the OpenOffice.org Writer Help page. The links provide a good
overview for delving deeper into the program. You also should consider
suppressing your natural annoyance and enable the startup tips and office
assistant for a few weeks. Both of these features offer useful information in
small chunks. Although your understanding may seem fragmented at first, in
the long run the tips are a painless way to learn.

 7. Start with the AutoPilot Features

One of OOo's features for newcomers is a series of wizards that lead you
through the process of setting up basic documents, such as a letter or memo.
You may not find the results exactly fit your needs, but they are a quick way to
get started with OOo. Look under Files→AutoPilot. Just as importantly, try
comparing the instructions in the AutoPilot with the final results. It's a good
way of knowing what office suites in general and OOo in particular can do.

 8. Learn to Use Styles

If you're the type of user who manually applies formatting, mark your switch to
OOo by learning how to use styles. Styles save you time in any word processor
by allowing you to make formatting changes once and have them ripple
through the document. Styles are especially important in OOo, because they
give you templates not only for paragraphs and individual characters but also
for pages, text frames and lists. Go with this flow and you not only minimize
difficulties, you increase your efficiencies.

The key to styles in OOo is the Stylist, a floating palette found at Format→Stylist.
You can use the Stylist to apply styles quickly as you type and to modify existing
styles or create new ones. It lists styles using several different filters, so you can
locate the ones you need quickly.

 9. Learn to Use the Navigator

The Navigator (Edit→Navigator) is another floating palette. Like the Stylist
palette, it is a key feature in using OOo effectively. As the name suggests, one of
the functions of the Navigator is to help you move quickly to different parts of
the document. Tables, OLE objects or pages—you can jump to almost any
element in the document you want. Elements are numbered as you create

them, but if you also give them descriptive titles, the Navigator can display
them, making jumping around even easier.

Don't let the name mislead you, though. The Navigator is far more than a map
of your document. Switch to Headings and it becomes an outlining tool, with
the ability to move entire sections and raise or lower the level of headings with
the drag of the mouse. Open a Master Document, and it becomes a table of
contents. You even can use the Navigator to add a Reminder to the text.

In short, you probably will come to spend a lot of time with the Navigator. And,
it is something for which your experiences with other office suites doesn't
prepare you.

As an aside, the default size of the Navigator may be too small. Drag its sides
until the Navigator is at least half again as large as the default, and you can use
it without eyestrain.

 10. Look for Hidden Functionality

Unexpected features or shortcuts can be found in any software. These aren't
quite Easter eggs but half-hidden functions that rarely are emphasized or
mentioned in the Help. For example, I quickly found Edit→Undo. Because I
generally use the menus or keyboard, though, it took me several weeks to
realize that if I selected the Undo button on the taskbar, I could choose the
exact level of Undo to which I wanted to revert. Similarly, if I want to insert text
automatically each time I use a style, I can use the Before field on the Options
tab for list styles and attach that list style to a paragraph style. Then, every time
I use that style, the text in the Before field appears without me having to type it.

Such surprises do three things: they give you confidence in your knowledge of
the program, they encourage you to keep learning and they offer shortcuts for
your daily work. They're well worth seeking.

 11. Take Time before Making a Decision

The first few times you start OOo, your impression simply may be that it's new.
It doesn't look the same as your old word processor, it isn't arranged in the
same way and it does some things differently. For some people, the newness
alone is enough to make them cut the experiment short.

Instead of jumping to conclusions, however, wait and learn the program before
making a decision about OOo or any of its features. Forget about your sense of
being overwhelmed with the new and try to get on with your daily tasks. Spend
at least 10–15 hours doing routine work before you even start to make a
decision. Then sit down and list the pros and cons of using OOo. If you decide

against OOo, keep it in mind and try another version in a year or two. In the
future, you may find that it fits your needs better. If you're a decision-maker at
a company, you also might consider contacting the OOo community to see
whether your company could sponsor the development of the features you
need. If you do decide to keep OOo, congratulations. You did your preparation,
and you're making the right choice.

Bruce Byfield was product manager at Stormix Technologies and marketing and
communications director at Progeny Linux System. He also was a contributing
editor at Maximum Linux and the original writer of the Desktop Debian manual.
Away from his computer, he listens to punk-folk music, raises parrots and runs
long, painful distances of his own free will.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Renaissance—A Cross-Platform Development Tool for

Linux and Mac OS X

Ludovic Marcotte

Issue #119, March 2004

Prepare to move to a Linux desktop by writing your apps with this flexible
framework now.

Renaissance is a free development framework, licensed under the terms of the
GNU LGPL, used for easily creating portable user interfaces. It allows the
developer to create rich user interfaces by using an open, simple and standard
format, XML.

When not using Renaissance, Objective-C software developers face the endless
task of maintaining the views of their applications for GNUstep with Gorm and
for Mac OS X with Interface Builder. As the application evolves and translations
are put into place, this can become a major burden, slowing the application
development.

Luckily, the Renaissance framework innovates by introducing many new
concepts to help developers create portable applications efficiently. Among the
innovations, are:

• Portability: the user interface can be reused entirely on platforms where
Renaissance has been ported. At this time, it can be reused on top of
GNUstep and Apple Cocoa.

• Localization: there is no need to duplicate the interface files under both
GNUstep and Mac OS X. Renaissance integrates perfectly with
Localizable.strings files.

• Intelligent autolayout mechanisms: each user interface component
contains intelligence to automate alignments and autoresizing. These are
essential especially when working with localizations.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Unobtrusive integration: Renaissance integrates easily with current
application code bases, as it uses the same paradigm of outlets and
connections traditionally used by NIB files.

Unfortunately, Renaissance also has some drawbacks. For example, sharing a
common user interface on both GNUstep and Mac OS X can lead to human
interface guidelines (HIG) violations on both platforms. Moreover, it currently is
not possible to use Cocoa-specific classes such as NSDrawer and NSToolbar
with Renaissance.

In this article, we use the source code of the TIFF image viewer that was created
for my previous article “Programming under GNUstep—An Introduction” [LJ,
April 2003, /article/6418]. We replace the view, previously created with Gorm
and Interface Builder, with one created in the Renaissance framework. You can
download the source code of the application from the SSC FTP site
[ftp.linuxjournal.com/pub/lj/listings/issue119/7102.tgz].

 Installing Renaissance

In order to compile and install Renaissance under Linux, we first need to make
sure GNUstep is installed properly. Using the latest stable release of GNUstep is
highly recommended. At the time of this writing, these include GNUstep make
1.9.0, GNUstep base 1.9.0, GNUstep GUI 0.9.1 and GNUstep back 0.9.1. For
detailed instructions on installing GNUstep, refer to the GNUstep Build Guide
for UNIX Systems (see Resources).

Once GNUstep is compiled and installed, you must load the proper set of
environment variables by executing a shell script. Bash users would use:

. /usr/GNUstep/System/Makefiles/GNUstep.sh

and C shell users would do:

. /usr/GNUstep/System/Makefiles/GNUstep.csh

Finally, to compile and install Renaissance, simply uncompress the Renaissance
archive file and type (as root):

cd Renaissance-0.8.0
make
make install

Under Apple Mac OS X, you either can install Renaissance from the source or
use a precompiled version. To install it from the source, you first must install
GNUstep make and then follow the same installation procedure as if you were
installing it under GNUstep. Alternatively, you can download the binary version

https://secure2.linuxjournal.com/ljarchive/LJ/108/6418.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/119/7102.tgz

from Renaissance's Web site, uncompress the file and move the resulting
Renaissance.framework folder to your /Library/Frameworks/ folder. I
personally recommend the latter option.

 A Simple GNUstep Application

In the April 2003 GNUstep article, we developed a simple TIFF image viewer. For
this application, we had to use Gorm under GNUstep and Interface Builder
under OS X to build the user interface. Luckily, Renaissance's portability
strengths can help us solve this burden. As our previous application uses the
Model-View-Controller (MVC) design pattern, we easily can redo the view using
Renaissance, as it already is well separated from the model and the controller.

The first step in redoing the view for our small application is to create the main
gsmarkup file. A gsmarkup (short for GNUstep Renaissance Markup Language)
file is a simple XML representation of how user interface elements should be
created and how they should be placed on screen and connected with one
another or other objects in the main application. For our application, the main
gsmarkup file represents the view to be shared on both GNUstep and Mac OS
X. To create it, open your favorite editor and create the TiffViewer.gsmarkup file
containing the content shown in Listing 1.

Listing 1. TiffViewer.gsmarkup

<?xml version="1.0"?>
<!DOCTYPE gsmarkup>
<gsmarkup>
 <objects>
 <window id="window"
 title="Tiff Viewer"
 closable="yes">
 <hbox>
 <image id="imageView"
 scaling="toFit"
 hasFrame="yes"
 width="300" height="300"
 valign="expand" halign="expand"/>
 </hbox>
 </window>
 </objects>
 <connectors>
 <outlet source="#NSOwner"
 target="#window"
 key="window"/>
 <outlet source="#NSOwner"
 target="#imageView"
 key="imageView"/>
 </connectors>
</gsmarkup>

In Listing 1, we tell Renaissance to create a closable window with the ID
window. Then, we place an image view inside this window with such initial
properties as the width and height of 300 points. We also specify that we want
this image view to be resizable horizontally and vertically. Renaissance

understands this and propagates the information up to the window to make it
automatically resizable. We then define the connections for those two UI
elements. We connect the window with our window outlet and the imageView
with our imageView outlet. Those two outlets previously were defined in the file
AppController.h.

Once the creation of the main gsmarkup file has been finished, we create the
gsmarkup file (Listing 2) to hold the application menu used under GNUstep. In
Listing 2, we define three menu items: Load Image, Hide and Quit. Each of them
has an associated action that is invoked if the menu item is clicked on.

Listing 2. GNUstep-Menu.gsmarkup

<?xml version="1.0"?>
<!DOCTYPE gsmarkup>
<gsmarkup>
 <objects>
 <menu type="main">
 <menuItem title="Load Image"
 action="loadImage:"/>
 <menuItem title="Hide"
 key="h"
 action="hide:"/>
 <menuItem title="Quit"
 key="q"
 action="terminate:"/>
 </menu>
 </objects>
</gsmarkup>

Once those two files have been created, we modify our initial GNUmakefile and
replace the reference to the Gorm files with our two newly created gsmarkup
files. We also add the Renaissance framework in our list of linked frameworks.
The GNUmakefile now should look like Listing 3.

Listing 3. GNUmakefile

include $(GNUSTEP_MAKEFILES)/common.make

APP_NAME = TiffViewer

TiffViewer_OBJC_FILES = AppController.m ImageModel.m
TiffViewer_RESOURCE_FILES = TiffViewer.gsmarkup \
 GNUstep-Menu.gsmarkup
ADDITIONAL_GUI_LIBS += -lRenaissance
ADDITIONAL_OBJCFLAGS = -Wall -Wno-import

include $(GNUSTEP_MAKEFILES)/application.make

Then, we modify our initial TiffViewerInfo.plist to remove the reference to
MainMenu.nib. The file now should contain the content shown in Listing 4.

Listing 4. TiffViewerInfo.plist

{
 ApplicationName = "Tiff Viewer";
 ApplicationDescription = "A small image viewer.";
}

The last step we must take before compiling the application is to implement
two delegate methods in our application's controller. Those methods are
responsible for loading the main gsmarkup file (TiffViewer.gsmarkup) and the
one used for the application menu (GNUstep-Menu.gsmarkup). They need to
be invoked automatically upon the application's startup on both GNUstep and
Mac OS X. To do so, use an editor to open the AppController.m file and modify
it so it has the content shown in Listing 5.

Listing 5. AppController.m

#import "AppController.h"

#import <Renaissance/Renaissance.h>

@implementation AppController
...
- (void) dealloc
{
 [model release];
 [super dealloc];
}

- (void) applicationDidFinishLaunching:
 (NSNotification *) theNotification
{
 [NSBundle loadGSMarkupNamed: @"TiffViewer"
 owner: self];
}

- (void) applicationWillFinishLaunching:
 (NSNotification *) theNotification
{
#ifdef GNUSTEP
 [NSBundle loadGSMarkupNamed: @"GNUstep-Menu"
 owner: self];
#else
 [NSBundle loadGSMarkupNamed: @"Cocoa-Menu"
 owner: self];
#endif
}

- (void) loadImage: (id)sender
{
 NSOpenPanel *oPanel;
 int result;

 oPanel = [NSOpenPanel openPanel];
...

Here, only two methods were added, -applicationDidFinishLaunching: and -
applicationWillFinishLaunching:. This shows yet another strength of
Renaissance—unobtrusive integration with current code bases.

Finally, compile and start the small application:

make
openapp TiffViewer.app

Once the application starts, click on the Load Image menu item and select a
TIFF file. It should display the image properly in the window, as shown in Figure
1.

Figure 1. The Image Viewing Application on GNUstep for Linux

 Apple Mac OS X Port

Under Mac OS X, we are sharing the main gsmarkup file with the GNUstep
version of our application, so we now have to create the gsmarkup file used for
our sample application menu, for Mac OS X. Doing so allows us to have a
different menu for Mac OS X, which is required because the layout of menus
under GNUstep (vertical) is different from the one on Mac OS X (horizontal).
Create the file Cocoa-Menu.gsmarkup with the content shown in Listing 6.

Listing 6. Cocoa-Menu.gsmarkup

<gsmarkup>
 <objects>
 <menu type="main">
 <menu title="TiffViewer" type="apple">
 <menuItem title="Hide TiffViewer"
 key="h"
 action="hide:"/>

 <menuItem title="Quit TiffViewer"
 key="q"
 action="terminate:"/>
 </menu>
 <menu title="File">
 <menuItem title="Load Image"
 action="loadImage:"/>
 </menu>
 </menu>
 </objects>
</gsmarkup>

In Listing 6, we also define three menu items: Hide TiffViewer, Quit TiffViewer
and Load Image. Contrary to GNUstep, we create the first two under the
TiffViewer menu, to be displayed in bold (notice the type="apple") and the
latter under the File menu. We do this because the menu disposition on Mac
OS X is different from GNUstep, and we want to follow the HIG at least with
regard to the menus.

Once the file has been created, we need to create the Mac OS X project file and
build the application. To do so, start the Project Builder application and
proceed with the following steps:

1. From the File menu, choose the New Project... menu item and select
Cocoa Application. Click on the Next button.

2. Specify the project name (TiffViewer) and the project directory, then click
on the Finish button.

3. Select the Classes node in the Groups & Files panel and then click on the
Add Files... menu item from the Project menu. Add the AppController.m
and ImageModel.m files. Those are the same files used under GNUstep.

4. Expand the Other Sources node and delete the main.m file. We don't need
this file.

5. Expand the Resources node and double-click on MainMenu.nib. This
launches Interface Builder. From Interface Builder's MainMenu.nib
window, delete MainMenu and Window by clicking on the corresponding
icons and choosing Delete from the Edit menu. Save everything and then
quit Interface Builder. We need to do so because Renaissance can provide
the application menu using our gsmarkup file.

6. Select the Resources node and add the Cocoa-Menu.gsmarkup and
TiffViewer.gsmarkup files, as you did in Step 3.

7. Expand the Frameworks and Linked Frameworks nodes and click on the
Add Frameworks... menu item from the Project menu. Add the
Renaissance.framework located in the /Library/Frameworks directory.

8. Finally, from the Build menu in Project Builder, choose Build and Run. This
compiles and launches the application.

Figure 2. The Image Viewing Application on Mac OS X

As you have seen in this section, porting the application from GNUstep to Mac
OS X is rather trivial. No code changes were required. As under GNUstep, you
can load a TIFF file in the application and try to resize the window. You should
see the image view automatically resizing both horizontally and vertically, as
specified in the main gsmarkup file. You also should notice the Apple-style
horizontal disposition of the application menu, as shown in Figure 2.

 Translating the Application

As said before, Renaissance eases localization. In order to show how, let's
translate our simple TIFF viewer to the French language. Renaissance
automatically knows what to translate and what to maintain. In our menu
gsmarkup files, each of the menu items had a title. Renaissance automatically
uses the title of UI elements as a key in the Localizable.strings files to get the
right translated string. In order to translate our sample application, create a
French.lproj directory inside the project's root directory. In that newly created
directory, create the Localizable.strings file with the content shown in Listing 7.

Listing 7. French.lproj/Localizable.strings

"File" = "Fichier";
"Hide" = "Cacher";
"Hide TiffViewer" = "Cacher TiffViewer";
"Load Image" = "Charger l'image";
"Quit" = "Quitter";
"Quit TiffViewer" = "Quitter TiffViewer";

We use the same file for both GNUstep and Mac OS X. Under GNUstep, modify
the GNUmakefile to add instructions so that our translation resource gets
installed. The following two lines need to be added to the GNUmakefile:
TiffViewer_LOCALIZED_RESOURCE_FILES = ... and
TiffViewer_LANGUAGES =

Listing 8. GNUmakefile Changes Required to Support Localization

...
TiffViewer_RESOURCE_FILES = TiffViewer.gsmarkup \
 GNUstep-Menu.gsmarkup

TiffViewer_LOCALIZED_RESOURCE_FILES = \
 Localizable.strings
TiffViewer_LANGUAGES = French

ADDITIONAL_GUI_LIBS += -lRenaissance
...

Finally, under GNUstep, recompile the application in order to copy the resource
file properly and launch it using its French translation, like this:

make
openapp TiffViewer.app -NSLanguages '(French)'

On Mac OS X, you also have to create the French.lproj directory and the
Localizable.strings file (or reuse the ones created for GNUstep) with the content
shown in Listing 5. Once they have been created, follow these steps to activate
the French localization in Project Builder:

1. Select the Resources node and from the Project menu, choose Add Files...
and add the French.lproj/Localizable.strings file.

2. From the Build menu, click on Build.

To run the application in French under Mac OS X, from the System Preferences,
click on the International icon. Then, drag Français before English and quit the
application. From Project Builder's Debug menu, click on Run Executable. The
application should start in French.

 Conclusion

The Renaissance framework provides valuable innovations to help develop
truly portable applications. Eventually, Renaissance will have a complete
graphical editor, allowing you to create gsmarkup files graphically, as you can
do now with Gorm, the Graphical Object Relationship Modeler for GNUstep, or
with Interface Builder under Mac OS X.

In a future GNUstep article, we will enhance our simple TIFF viewer application
to work with the GNUstep Database Library (GDL), an excellent free
implementation of the NeXT's Enterprise Objects Framework (EOF).

Resources

GNUstep Build Guide for UNIX Systems: documents.made-it.com/GNUstep/
Build

Objective-C Programming Language: developer.apple.com/techpubs/macosx/
Cocoa/ObjectiveC

“Programming under GNUstep—An Introduction” by Ludovic Marcotte: /article/
6418

Renaissance: www.gnustep.it/Renaissance/index.html

Source code of the application from the previous article: ftp.linuxjournal.com/
pub/lj/listings/issue108/6418.tgz

Ludovic Marcotte (ludovic@inverse.ca) holds a Bachelor's degree in Computer
Science from the University of Montréal. He is currently a software architect for
Inverse, Inc., a small IT consulting company located in downtown Montréal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://documents.made-it.com/GNUstep/Build
http://documents.made-it.com/GNUstep/Build
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418.html
https://secure2.linuxjournal.com/ljarchive/LJ/108/6418.html
http://www.gnustep.it/Renaissance/index.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/108/6418.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/108/6418.tgz
mailto:ludovic@inverse.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 The OASIS Standard for Office Documents: How All

Users and Developers Can Benefit

Marco Fioretti

Issue #119, March 2004

A common set of file formats has the potential to be the most meaningful
advancement for free software on the desktop.

Desktop integration begins with documents, not with any toolkit or bundle of
applications. If files can be read and written by every application, users can
communicate, work together and become integrated. In this sense, the OASIS
XML format for office documents has the potential to be one of the most
meaningful advances in free computing.

OASIS stands for Organization for the Advancement of Structured Information
Standards. Formerly SGML Open, this nonprofit consortium, which includes
such companies as IBM, Sun and Boeing, aims to create open standards for
almost any kind of structured information. The one we cover here is an XML-
based format common to all kinds of office files—text, spreadsheets,
presentations and more.

The significance of an effort of this caliber to promote a file format, rather than
any specific desktop, application or the Linux kernel itself, cannot be
underestimated. Free as in free formats is even more important than free
software. Only with them and the internal structuring that comes from XML can
data be exchanged, with new or different programs without any need for
converters, or be directly edited, indexed, analyzed and exchanged between
heterogeneous groups or servers—like Web services without the hype. Data
will start belonging exclusively to end users.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/119/7159f1.large.jpg

Figure 1. Switching to OASIS and never going back: OpenOffice.org can convert all your
closed-format documents to the new standard with only a few clicks.

The OASIS Office Technical Committee had its first meeting in February 2003.
The official file format should be voted on in February 2004. After the approval,
Phase 2 will start; its main goal will be to extend the base specification to
additional areas of application. The real goal is the move to a document-centric
model, independent from and available to any given program, regardless of its
license. The Technical Committee is determined to quit with the assumption
that every file spec must be application-bound, as today.

Some farsighted public administrations already have started to think in this
way. The Swedish Agency for Public Management says, “[We] should also follow
and if possible support work that takes place in OASIS....An open file format for
office software is of great importance for increased interoperability”
(www.openoffice.org/servlets/ReadMsg?msgId=585772&listName=discuss). At
the European Union level, IDA (Interchange of Data between Administrations)
decided in 2003 to carry out exploratory work on open document formats and
on how public administrations could persuade software vendors to support
them.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7159f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7159f1.large.jpg
http://www.openoffice.org/servlets/ReadMsg?msgId=585772&listName=discuss

 What Does It Look Like?

The standard conforms to general W3C specifications for XML technologies and
covers every aspect of document usages. User interaction, for example, is
described in XML schema templates, which operate like traditional API
functions. Even they, however, now are independent of any single application.

A text format can be much bigger and more inefficient than an equally free but
binary one. Even when the performance hit would be noticeable, however, the
benefits simply are too great to give up. In itself, an OASIS office file (be it text,
presentation or spreadsheet) is a zip archive: the compression format chosen is
a compromise of efficiency, speed of accessing internal parts and algorithm
license. Unzipping it, we first find five XML files: styles.xml, presentation and
formatting; contents.xml, actual contents; settings.xml, application settings
such as zoom level and printer; meta.xml, language and uncoding metadata;
and manifest.xml, an explanation of what all the other files are and their
relative paths.

Other components (each in a predefined folder, so that even virus scanners
have an easier time) may be macros, their dialogs and objects, such as charts or
formulas.

Because the standard imposes that all pieces must be present in the zip
archive, no information is lost: content, layout and everything else always travel
together. Unlike some proprietary offerings in the same space, there is no
restriction on which application must be employed to make full use of a
document. WYSIWYG results are possible and can be specified fully or replaced
in the styles.xml file. At the same time, however, content and presentation are
decoupled; hence, content and nothing else is attainable by any application, for
any conceivable use. kfile-plugin-ooo, for example, extracts all the metadata
embedded in the new file format. The end user then can read, search by
metadata or modify all this information straight from KOffice or Konqueror.
This plugin also is included in the latest KOffice source trees.

Text format and internal structure make decades of UNIX experience in
processing and generating text come back with a vengeance to tame complex,
WYSIWYG office documents of every kind. Shell one-liners, Web spiders and so
on can query and process directly, much like a database engine, single
documents or whole classes of them. Viewing attached presentations as text in
mutt or industry-level content management systems becomes easier. As a
proof of concept, I was able to get the (admittedly rough) outline of Listing 1
from a presentation simply by typing:

tr "<" "\012" < content.xml | grep ^text \

| cut '-d>' -f2, | uniq

Listing 1. Extracting the Text of an OASIS Presentation at the Command Line

Problems with
a lot of the bang up to date mainstream Free SW

Requires modern HW:

plenty of RAM

fast CPUs

big Hard disk drives

Unlike SW, modern HW cannot be "free as free beer"

Doesn't this sound familiar?

Encryption obviously is supported, and any paragraph can have an identity
attribute. Through this feature, different users can be granted access to
different parts of the same document based on their privileges. The default text
encoding is UTF-8, even if other ones can be chosen. Suggestions to improve
the standard can be posted to office-comments@lists.oasis-open.org.

 What about End Users?

This design and implementations are all well and good, but users need some
application to use it. What is available? Absolutely complete compatibility is
possible only with software designed from scratch or with software that has
been modified thoroughly to achieve it. In general, existing programs and their
developers may have to compromise between the standard and their current
concept of the perfect structure of the perfect document. For example, margins
are a section or page property in some applications and a paragraph property
in others.

This said, the users of OpenOffice.org will have the easiest time; the OASIS
standard is built on and almost will be equal to the current OOo formats.
AbiWord has both import and less-advanced export filters, but they are not
100% complete. Contributions to improve them are extremely welcome. This
program also offers end users the option to use OOo as the default file format.
The plan for KOffice, after improving the filters for version 1.3, is to start the
switch to OASIS as the native format of future releases. David Faure, one of the
chief KOffice developers, also is a member of the Technical Committee, and he
foresees no real obstacles to a complete support of the standard, in spite of the
frame-oriented rather than page-oriented paradigm used in KOffice.

mailto:office-comments@lists.oasis-open.org
https://secure2.linuxjournal.com/ljarchive/LJ/119/7159f2.large.jpg

Figure 2. KOffice is ready to switch to OASIS fully. The internal structure already is stored in
XML format, including metadata, and is searchable with external plugins.

SIAG offers some support for reading text and spreadsheet files through
external applications, but nothing is available for writing. Emacs surely will
come up with its own OASIS mode sooner or later, and WordPerfect also is
officially represented in the Technical Committee. In short, things look good.
Choice already is offered, and the only things left are to set OASIS as the default
save format and to refuse to receive or send files in proprietary formats.

 Developer Tools

A lot of code already is available to study and reuse for processing the OASIS
file format. Whatever you choose, don't forget the standard itself and the main
point—format and applications shall remain separated. If you want to improve
the first, submit proposals as explained above. If you want faster or more
featureful code, do it yourself or help the developer(s) of the corresponding
application without touching the format or inventing a new one.

Several standalone filters already are available to move back and forth between
OASIS/OOo files (or XML in general) and other formats. The utilities RTF2XML,
ooo2txt, SIAG, O3read, o3totxt, o3tohtml, OOo2sDbk, Writer2LaTeX and
soffice2html (see Resources) cover together RTF, (X)HTML, LaTeX, DocBook and,
of course, plain text.

CPAN hosts several Perl modules useful for OASIS-related processing.
OpenOffice::Parse::SXC parses OOo spreadsheets, making the text value of

https://secure2.linuxjournal.com/ljarchive/LJ/119/7159f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7159f2.large.jpg

each cell (but nothing else) available for the main script. It comes with a utility
to convert OOo spreadsheets to CSV format. Another Perl module, XML::Excel
can transform Excel spreadsheets into plain XML, dumping them into an
intermediate structure for custom processing, if necessary. On the server side,
Apache::AxKit::Provider::OpenOffice extracts the content of text (.sxw) files.

Tcl has linters, DOMs and XSLT interfaces, as well as an API that allows
switching to different parsers with no changes to the application code. When
nothing else is available, a native Tcl parser is used; otherwise the developer
can take advantage of both Expat and Libxml (see below).

PDA developers have a dedicated project, related to OASIS quite directly, called
XMerge that currently is developed in Java for Palm and Pocket PC. Its purpose
is to allow the editing of OOo documents (maybe previously converted to a
more limited format) with PDA native applications, in such a way that any
changes can be merged back into the original format without loss of style,
formatting and so on.

 Parsers and Libraries

At a lower level, what is needed to manage OASIS files in a larger application,
where the source language usually is C or C++ and the performance must be
maximized? First of all, the program must include the proper library to
compress and uncompress zipped files. This is not an OASIS-specific issue, so
we won't deal with it further.

Once the single XML files are available, they have to be loaded in a way that
understands and makes accessible the internal structure, that is, the
relationships among the several elements. Once this step has been performed,
data can be converted or processed in any manner. A lot of tools for this
already exist. Several of them are designed to support general XML rather than
OASIS, but the difference is quite a bit smaller than one might expect. And this
situation is expected to improve soon after the standard is released.

Expat is a popular XML parser written in C that is basic and lacks a validation
capability but still is the fastest one around. It also has front ends for practically
every language. A more featureful library that supports DTD validation and is
designed specifically for GNOME is Libxml. Like Expat, Libxml is written in C, is
portable and can be used within a lot of languages. The Xerces parser, in Java,
also can generate and validate XML documents.

In the Qt/KDE field, developers have at their disposal, besides the OOo plugin
already mentioned, the related Qt classes and DOM implementation (QDom) to
write or parse XML, as well as the KOffice DTD. At the time of this writing, these

tools still target the KOffice XML format, but they are expected to converge on
the OASIS standard.

For security-conscious developers, the easiest starting point is the C XML
security library (XMLsec), based on LibXML2, which supports both signing and
encryption of XML material. SAXEcho is a (mostly) Java program that attaches
itself to a running OpenOffice.org document to show the XML tree
representation of the current document. It also validates or modifies the
document operating directly on XML nodes, plus several other nifty things.

 Event-Driven XML Processing

The parsers described above build an internal tree representation of the
document. What should one do when developing applications that must deal
with large documents? Keep in mind that large here means too big to fit into
memory, which is not so big if this format must be usable even for low-end
desktop applications.

The current solutions in this space follow the so-called SAX (simple API for XML)
approach: instead of building the whole tree of a document in one fell swoop
and keeping it there for further processing, go step by step. A SAX parser reads
the document and, instead of keeping it all in memory, generates an event
every time it finds something worthwhile. The parser then passes the event to
event handlers that interact with the application. The something worthwhile
can be XML document-type definitions, errors or elements of the actual
content. A good starting point for SAX-based programming is the SAX Project.
SAX2 already is supported in Java through JAXP and in Perl through the Orchard
Project, which is quite stable, not to mention fast and lightweight, as far as SAX
and XML processing are concerned.

 Conclusion

All the research done for this article confirmed one of my first impressions: so
far, the free software/open-source software approach to guarantee information
interchange has been to develop cross-platform applications, which are difficult
to maintain and optimize for each target environment. Now it looks like we are
starting to do the right thing, which is to define truly Free, standard, toolkit-
independent, cross-platform formats that leave everyone free to create any
possible front end to read and write them.

Acknowledgements

Thanks above all to Gary Edwards and David Faure for all the material and
explanations. Pierre Souchay (kfile-plugin-ooo) and the AbiWord developers
also were very helpful.

Resources

AbiWord: www.abisource.com

CPAN: www.cpan.org

EU-IDA: europa.eu.int/ISPO/ida

Expat: expat.sourceforge.net

kfile-plugin-ooo: bad.sheep.free.fr/kfile-plugin-ooo.html

KOffice: koffice.kde.org

KOffice DTD: www.koffice.org/DTD/kword-1.2.dtd

Libxml: xmlsoft.org

OASIS Office File Format TC: www.oasis-open.org/committees/tc_home.php?
wg_abbrev=office

OASIS Web Site: www.oasis-open.org

OOo2sDbk: www.chez.com/ebellot/ooo2sdbk

ooo2txt: ooo2txt.free.fr

OpenOffice.org: www.openoffice.org

Orchard: orchard.sourceforge.net

QDom: doc.trolltech.com/3.1/xml-tools.html

RTF2XML: www.xmeta.com/omlette/rtf2xml

SAXEcho: xml.openoffice.org/saxecho

SAX Project: www.saxproject.org

SIAG, O3read, o3totxt, o3tohtml: siag.nu

soffice2html: hoopajoo.net/projects/soffice2html.html

Stop Word Attachments: www.gnu.org/philosophy/no-word-attachments.html

http://www.abisource.com
http://www.cpan.org
http://europa.eu.int/ISPO/ida
http://expat.sourceforge.net
http://bad.sheep.free.fr/kfile-plugin-ooo.html
http://koffice.kde.org
http://www.koffice.org/DTD/kword-1.2.dtd
http://xmlsoft.org
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.oasis-open.org
http://www.chez.com/ebellot/ooo2sdbk
http://ooo2txt.free.fr
http://www.openoffice.org
http://orchard.sourceforge.net
http://doc.trolltech.com/3.1/xml-tools.html
http://www.xmeta.com/omlette/rtf2xml
http://xml.openoffice.org/saxecho
http://www.saxproject.org
http://siag.nu
http://hoopajoo.net/projects/soffice2html.html
http://www.gnu.org/philosophy/no-word-attachments.html

TclXML: tclxml.sourceforge.net

Writer2LaTeX: www.hj-gym.dk/~hj/writer2latex

Xerces: xml.apache.org/xerces-j

XMerge: xml.openoffice.org/xmerge

XMLsec: www.aleksey.com/xmlsec

Marco Fioretti is a hardware systems engineer interested in free software both
as an EDA platform and, as the current leader of the RULE Project, as an
efficient desktop. Marco lives with his family in Rome, Italy.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://tclxml.sourceforge.net
http://www.hj-gym.dk/~hj/writer2latex
http://xml.apache.org/xerces-j
http://xml.openoffice.org/xmerge
http://www.aleksey.com/xmlsec
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Getting the Most from XMMS with Plugins

Dave Phillips

Issue #119, March 2004

Our readers' favorite audio tool offers some advanced features you can use to
customize your listening experience.

XMMS (the X MultiMedia System) is a feature-rich multimedia player that has
won the Linux Journal's Readers' Choice Award for Favorite Audio Tool for the
past four years. I assume, then, that the program needs little introduction here.

Most users of the program probably use it to play MP3s, but its default range of
supported file formats also includes OGG, WAV, CD audio and all formats
supported by the MikMod music module player. Thanks to various third-party
input plugins, XMMS also can play almost every available audio and video
format, as we soon shall see. Supported audio output formats include ALSA,
OSS, esd and aRts. It also has a driver for writing audio output to disk in the
WAV sound file format, which is quite handy for converting sound files for
burning to an audio CD.

But, XMMS is more than a versatile player. This brief article dives a little deeper
into the program to expose some of its extended features, such as its equalizer
and playlist capabilities, as well as some interesting and useful third-party
plugins.

 Basics

XMMS is divided into three panels: the player, a graphic equalizer and a playlist
window. The player contains the expected transport controls as well as sliders
for volume and balance, or pan position. Another larger slider controls a
pointer for random access into the file being played. Toggles are provided for
the other panels, and switches control song looping and random playback.

The graphic equalizer (EQ) presents 11 sliders, one for preamp gain (+/– 20db),
the others for boosting or cutting audio frequencies in ten bands (channels).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Ten channels provide decent basic equalization, with starting frequencies at 60,
170, 310, 600, 1k, 3k, 6k, 12k, 14k and 16k Hertz. These numbers indicate the
throw (movement range), for each slider ranges from 100 up to 6,000 Hertz,
which is rather coarse-grained, but the sliders are nicely responsive with
smooth real-time audio updating. The default equalizer is fine for most desktop
audio listening, but for finer resolution you can try Felipe Rivera's graphic EQ
plugin that can be configured for 10, 15, 25 or 31 bands (see this article's
Resources for links to all software discussed).

The playlist panel displays the files to be played and provides a number of
useful file controls. The buttons on the lower left add and delete files from the
list, make and sort selections and open an ID3 editor for the information tag
attached to an MP3. The playlist window also includes a set of transport
controls identical to those in the player panel, along with indicators for elapsed
time during file play and for total time of the playlist. Finally, the List button on
the lower right lets you load a new playlist, blank out the current list or save the
contents of the playlist to a new file. Playlists are plain-text files in the common
M3U playlist format, meaning the entries are simply paths to the included files.
The playlist is quite flexible and accommodates any file type supported by
XMMS and its plugins.

 A Little More Advanced

Let's take a peek at some of these plugins. XMMS utilizes plugins for file I/O,
special effects, visualization and a general category. For the purpose of this
article, I focus on only a few I/O and effects plugins.

Erik de Castro Lopo's libsndfile has taken its place as the preferred sound file I/
O library for such projects as the Ardour digital audio workstation and the
MusE audio/MIDI sequencer. Erik's libxmms_sndfile plugin expands XMMS'
sound file support to a wider variety of sound file types, including AIFF, AU/SND,
IRCAM SF and many others. Nandan Dixit's libxmmsmplayer plugin adds the
ability to play any video file format supported by the MPlayer video playback
engine, extending XMMS' file support to MPEG, ASF, AVI, MOV and other video
formats. Nick Lamb's ladspa.so is in fact a plugin to host plugins. LADSPA (the
Linux Audio Developers Simple Plugin API) is an interface designed for creating
simple but powerful audio processing plugins. Ladspa.so brings dozens of
interesting effects to XMMS, all usable during real-time playback. Figure 1
shows off XMMS with a playlist containing sound files in five formats (AIFF, AU,
MP3, OGG and WAV); movies in MPEG, AVI and RM formats (yes, the MPlayer
plugin handles RealVideo too); and the LADSPA plugin at work lending its plate
reverb and retro flanger to the XMMS audio processing functions.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7273f1.large.jpg

Figure 1. XMMS Showing a Playlist Containing Sound Files in Five Formats

 Finale

That's all for this preview of some of XMMS' advanced features. Big thanks to
the main development team for creating and maintaining XMMS, to the whole
crew of third-party plugin developers for their wonderful expansions and to
4Front Technologies for its support of this most excellent Linux multimedia
software.

Resources

Felipe Rivera's Equalizer Plugin: equ.sourceforge.net

The LADSPA Plugin: www.ecs.soton.ac.uk/~njl98r/code/ladspa

The libsndfile Plugin: www.zipworld.com.au/~erikd/XMMS

The MPlayer Plugin: xmmsmplayer.sourceforge.net

XMMS: www.xmms.org

https://secure2.linuxjournal.com/ljarchive/LJ/119/7273f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7273f1.large.jpg
http://equ.sourceforge.net
http://www.ecs.soton.ac.uk/~njl98r/code/ladspa
http://www.zipworld.com.au/~erikd/XMMS
http://xmmsmplayer.sourceforge.net
http://www.xmms.org

Dave Phillips is a musician, teacher and writer living in Findlay, Ohio. He has
been an active member of the Linux audio community since his first contact
with Linux in 1995. He is the author of The Book of Linux Music & Sound, as
well as numerous articles in Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Manipulating OOo Documents with Ruby

James Britt

Issue #119, March 2004

Who says you have to wait for some future OS to integrate your office
documents with business applications you develop? Work with
OpenOffice.org's XML-based documents using Ruby.

OpenOffice.org (OOo), a featureful suite of office tools that includes
applications for word processing, spreadsheet creation and presentation
authoring, has seen an increase in enhancements and overall quality. OOo lives
up to its name by making both source code and file formats completely open.
This is a big plus for anyone wishing to manipulate documents without needing
to have the creator application present.

In general, two ways exist to access or manipulate document content. One is to
automate the source application, letting a program substitute for a person
entering commands. The other is to go directly to the document. An advantage
of the first approach is you get to exploit the power of an existing application,
saving yourself a good deal of time figuring out file formats and processing
commands. OOo can execute internal macros and expose a scripting interface
through UNO. The downside is you need to have the actual application handy,
and even then it may not be able to do what you want. This article describes
the second approach: accessing and manipulating documents by going directly
to the source.

 OOo Extract

I first became aware of what could be done with an OpenOffice.org document
when Daniel Carrera announced his OOoExtract program. This is a Ruby
application that allows you to run command-line searches of OOo Writer
document content. As the home page states, OOoExtract performs matches on
both text content and styles, executes search patterns using full regular
expressions and runs searches built with Boolean operators. The program runs

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

on any platform that has a Ruby interpreter, and they are available for pretty
much every OS around.

Ruby has been discussed before in Linux Journal, but if you are not familiar
with it, a good though brief description might be to say it's a cross between Perl
and Smalltalk, with some features from Lisp and Python. It is deeply object-
oriented and has a clean intuitive syntax. Yukihiro “Matz” Matsumoto, its
creator, released the first alpha version in 1994. It has grown steadily in
popularity, and the Third International Ruby Conference was held in November
2003, in Austin, Texas.

To get a feel for OOoExtract, download the program; currently, you can get the
application as a single executable file or as a tarball with constituent libraries in
separate files. Once installed, we can create a simple Writer document and run
some searches. If you have OOo handy, fire it up and enter some brief text,
such as:

My sample document
It has two lines

Save the file as sample1.sxw to the same directory where you installed
OOoExtract, and run OOoExtract from the command line, like this:

./ooo_extract.rb --text sample sample1.sxw
My sample document

The program searches sample1.sxw for any lines that match on the word
sample. Actually, this is a regular expression, albeit a simple one. We also can
use more complex expressions, such as this one that matches any three-letter
word:

./ooo_extract.rb --text "\s\w\w\w\s" sample1.sxw
It has two lines

This is all well and good, but OOoExtract really shines by letting us search on
content metadata, the extra information about the text in our document.
Suppose we add an additional line to our sample Writer document:

This one has some extra formatting

After entering the text, select the word extra and apply the Footer paragraph
style. Save the file and run this search:

./ooo_extract.rb --style="Footer" sample1.sxw
This one has some extra formatting

In addition to locating text based on content, OOoExtract also can give you text
with specific markup. This is quite handy if you create your own semantically
rich styles. You then can use OOoExtract to retrieve information based on
content and meaning, effectively turning an OpenOffice.org Writer document
into a lightweight database. You can run the program against multiple files by
using wild cards in the filename. For example, suppose you store recipes in
Writer files. If you've defined and used custom styles, you could locate specific
information, such as what recipes have apples as an ingredient:

./ooo_extract.rb --text="apple" --style="Ingredient" recipes/*.sxw
AppleSalsa.sxw: 2 medium red apples
AppleStrudel.sxw: 4 cups peeled and sliced apples

 The SXW File Format

So, how does OOoExtract do its magic? The secret is in the file format. Although
any given Writer file has an sxw file extension, running the UNIX file command
tells us that it is a zip file:

$ file sample1.sxw
sample1.sxw: Zip archive data, at least v2.0 to extract

And what has been zipped? Let's see:

$ unzip -l sample1.sxw
Archive: sample1.sxw
 Length Date Time Name
 -------- ---- ---- ----
 30 11-26-03 01:40 mimetype
 2328 11-26-03 01:40 content.xml
 8358 11-26-03 01:40 styles.xml
 1159 11-26-03 01:40 meta.xml
 7021 11-26-03 01:40 settings.xml
 752 11-26-03 01:40 META-INF/manifest.xml
 -------- -------
 19648 6 files

The OOo XML format exposes all content and metadata in plain text; there is no
need to worry about cryptic binary encoding or complex layout. Because the
data is exposed as XML, numerous existing XML tools are available for extra
OOo parsing. Having the file in plain text means, of course, that anything you
might want to know about the file is available if you simply look. However, we
get a good deal of help because the OpenOffice.org team also provides
assorted documentation detailing the format. The technical reference manual
for OpenOffice.org XML File Format 1.0 is a 571-page PDF document. I confess
to not having read the entire tome, though I doubt it lacks any detail one might
care to find.

For our purposes, we need look only at some basic markup to see how
OOoExtract works and to gain some understanding of the markup.

If you unzip our sample document and load content.xml into a text editor, you
should notice a few things. First, the file is not formatted for your viewing
pleasure. You may want to run the file though an XML-formatting tool, such as
tidy, to get some new lines and indentations in place to make it easier to follow.

The file starts with an XML declaration, followed by a DOCTYPE reference. Right
after that comes the root element, office:document-content. The beginning tag
has a good number of XML namespace attributes. We needn't be concerned
with these, but they give some idea of the range of content one might find in an
OOo document.

Immediately inside the root element we find child elements for scripts, font
declarations and styles. As ours is a fairly simple document, the data here is
sparse. For our immediate interests, the useful stuff comes inside the
office:body element. Yet, even here, a few elements simply declare the
presence (or, in our case, the absence) of various items, such as tables and
illustrations. The full document is available from the Linux Journal FTP site
[ftp.linuxjournal.com/pub/lj/listings/issue119/7236.tgz].

The real content in our document appears inside of text:p elements:

<text:p text:style-name="Standard">My sample
document</text:p>
<text:p text:style-name="Standard">It has two
lines</text:p>
<text:p text:style-name="Footer">This one has
some extra formatting</text:p>

Incidentally, if you are unfamiliar with some of the details of XML syntax, this
notation simply says that it is a p element, defined in the text namespace. The
use of the prefix and colon is a shorthand way to reference the namespace URI
given at the top of the document. It's used to avoid name collisions with other p
elements that may be defined for some other XML vocabulary. For our
purposes we can simply think of it as one complete element name.

Our sample document had only three paragraphs, so as we might expect, there
are three text:p elements. Each one has a text:style-name attribute that
indicates a style to apply to the text. It is this attribute that lets OOoExtract
locate text based on styles.

You may be wondering about the Footer style. Our content.xml file does not
define it, and indeed this separation of style name from implementation detail
is good. It would be a shame if instead of a simple name, the document had
assorted attributes for font size and family, color and so on. The ability to locate
content based on semantic or structural data would be lost, and we would be
confined to treating the data strictly in rendering terms. If you really do want to

https://secure2.linuxjournal.com/ljarchive/LJ/listings/119/7236.tgz

see how OOo defined the Footer style, you can peer into styles.xml. There you'll
find that Footer is based on the Standard style, with a few changes.

 From Zip to REXML

It's all well and good that OpenOffice.org uses zipped XML, but once we've
extracted these files, what is next? Lucky for us, Ruby 1.8 includes an
outstanding XML parser, REXML. REXML is an XML 1.0 conformant parser, and
in addition to its own Ruby-style API, it provides full implementations of XPath
and SAX2. It was developed and is maintained by Sean Chittenden. Sean says
he wrote REXML because, at the time, there were only two choices for XML
parsing with Ruby. One was a binding to a native C parser, a possible limitation
on portability. The other was pure Ruby, but in Sean's view, it lacked a suitable
API. Sean was familiar with various Java XML parsers but disliked their
adherence to the W3C's DOM or the community-driven SAX. The designers of
Electric XML offered an API based on known Java idioms, one that readily would
be intuitive to Java programmers.

Such was the philosophy behind the REXML API; the name stands for Ruby
Electric XML. Not surprisingly, though, the REXML API moved from the Java-
flavored original to a Ruby-way design, allowing developers to access and
manipulate XML using the syntax and features, such as blocks and built-in
iterators, common to Ruby.

 The REXML API

The REXML tree parser easily lets one load XML documents:

require "rexml/document"
file = File.new("som_xml_file.xml")
doc = REXML::Document.new file

or:

require "rexml/document"
my_xml_string = "<sample>
 <text>This is my REXML doc</text>
 </sample>"
doc = REXML::Document.new my_xml_string

The Document constructor takes either a string or an I/O object; REXML figures
out which it is and does the right thing. Once you have a document, you can
locate elements using Ruby's Array and each syntax combined with an XPath
selector:

my_xpath = "sample/text"
doc.elements.each(my_xpath){
 |el| puts el.text }

In the above example, the each method iterates over each element matched by
the XPath selector. A code block (the part inside the { ... }) is called for each
iteration. The variable el is the current element in the iteration, so this example
simply prints the text for each element matched by the XPath.

 XPath

Our sample Writer document and its corresponding XML is quite simple, so
finding what we want is close to trivial. It wouldn't take much to figure out the
right element for particular content. A simple example can be best for articles
such as this, but in real life we aren't likely to see anything that basic. We may
know only limited details of the markup, such as the style attributes or a parent
element. Finding such content becomes more of a challenge, but XPath helps
save the day.

XPath is a W3C recommendation for addressing parts of an XML document. It
allows one to construct a path specifier that defines location based on element
and attribute names and content, plus relative or absolute positioning. Given a
complex XML document, you can define an XPath expression that locates, for
example, all text:p elements that are immediate children of the office:body
element with this expression:

*/office:body/text:p

The leading asterisk says (in XPath-speak) to follow any path through the XML
document tree that leads to a text:p element that is the child of an office:body
element. With REXML, we can use this XPath to retrieve and iterate over a
collection of matching elements:

xml.each_element(*/office:body/text:p") do |el|
 # do something with el, such as
 # look for content or a style attribute
end

In this example, the code between do and end is a block. It is like an
anonymous function that gets called for each item in the collection—in this
case, each element matching the XPath—where the item is passed in as an
argument, indicated by the two vertical bars just after “do”. This is essentially
how OOoExtract works, but you should visit the OOoExtract home page for
details on the numerous command-line parameters.

 Toward a More General OOo API

Having seen OOoExtract, I wanted to have a more general-purpose OOo object
for Ruby. The same basic ideas that drive OOoExtract could allow not only
reading data, but creating, updating and deleting, for example, the CRUD
operations we know and love from database tools. To this end, a project named
OOo4R has been created on RubyForge, the Ruby software CVS repository. The
design goals are simple access to data and metadata, transparent use of XPath
and an intuitive API for doing the commonplace, such as adding paragraphs,
headings and styles. Space does not allow a complete walk-though of all such
features, but we can look at accessing document metadata to see one way of
using Ruby's dynamic message handling to extract element content.

Earlier we saw that an OOo document has several XML files packaged in a
single zip file. We looked at the content.xml file; another is meta.xml. It holds
information about the document itself, such as the document title, the creation
date and the word count. The root element is office:document-meta. This, in
turn, contains an office:meta element that holds numerous child elements with
the data of interest. For example:

<meta:initial-creator>James Britt
</meta:initial-creator>
<meta:creation-date>2003-11-25T17:36:31
</meta:creation-date>
<dc:creator>James Britt</dc:creator>
<dc:date>2003-11-25T18:40:59</dc:date>
<dc:language>en-US</dc:language>
<meta:editing-cycles>13</meta:editing-cycles>

The full metadata file is available from the Linux Journal FTP site
[ftp.linuxjournal.com/pub/lj/listings/issue119/7236.tgz].

In addition to a main Document class, OOo4R defines a meta class to
encapsulate the metadata. A meta class uses an REXML document to hold the
contents of meta.xml. A meta object largely is a collection of attributes. Typical
usage either would be asking an object for a particular value, such as the name
of the author, or assigning a value, such as a new title. One way to code this
would be to write a series of explicit attribute accessor methods. We would
need two methods for every attribute. Or, we could use dynamic method
invocation by grabbing accessor messages, finding a matching meta attribute
and either performing the requested action on the corresponding attribute or
raising an exception.

The following code example focuses on the Dublin Core metadata elements
used in OOo. The Dublin Core Metadata Initiative is an open forum for defining
metadata standards. Dublin Core elements often can be found in RSS feeds

https://secure2.linuxjournal.com/ljarchive/LJ/listings/119/7236.tgz

and some XHTML documents. As with all elements in an OpenOffice.org XML
file, the elements have a namespace prefix. Rather than have users know and
use these prefixes, we can map the full element name to something friendly.

The definition of the Meta class begins with the creation of a hash that maps
friendly names to actual element names, plus a class constant to hold the base
XPath for the metadata. The class constructor simply creates an REXML
document from the XML source:

module OOo
 class Meta

 NAME_MAP = {
 'description' => 'dc:description',
 'subject' => 'dc:subject',
 'creator' => 'dc:creator',
 'author ' => 'dc:creator',
 'date' => 'dc:date',
 'language' => 'dc:language',
 'title' => 'dc:title'
 }
 XPATH_BASE = "*/office:meta"

 def initialize(src)
 @doc = REXML::Document.new(src.to_s)
 end

We can redefine the method_missing method available to all Ruby classes so
that, rather than raising an exception (as it would do by default), it looks to see
if the message sent to the object maps to some item in our metadata:

def method_missing(name, *args)
 n = name.to_s
 if is_assignment? n
 el = map_for_assignment n
 xpath = "#{XPATH_BASE}/#{el}"
 assign(xpath, *args)
 else
 el = Meta.map_name n
 xpath = "#{XPATH_BASE}/#{el}"
 find(xpath)
 end
end

The first argument to method_missing is a symbol object, so our code grabs the
string representation. The is_assignment method simply checks if the name
ends with an = character. If this is an assignment request, then
map_for_assignment removes any trailing characters following the metadata
name and maps the friendly name to the actual Dublin Core element name;
assign updates the corresponding element in the REXML document:

def assign(xpath, val)
 node = @doc.elements.to_a(xpath)[0]
 node.text = val
end

If this does not appear to be an assignment, the code tries to read some
metadata. As before, the name is mapped, but now the code calls find:

def find(xpath)
 begin
 return @doc.elements.to_a(xpath.to_s)[0].text
 rescue Exception
 raise OOo::OOoException.new(
 "Error with xpath '#{xpath}': #{$!}", $@)
 end
end

Helper methods omitted ...

 end
end

The technique works for accessing the other metadata elements, though there
are special cases where the metadata is contained in a series of child elements.
Updating the zip file contents and writing the zip file back to disk using Ruby's
built-in Zip class, lets us save modified OOo documents.

 Summary

Because the OpenOffice.org file format uses a fully documented XML format,
OOo files may be created or manipulated without requiring OOo itself. Ruby's
built-in XML handling and dynamic nature make it a natural fit for OOo tasks.

Resources

Dublin Core: dublincore.org

OOo_extract: www.math.umd.edu/~dcarrera/openoffice/tools/ooo_extract.html

OOo Formats: xml.coverpages.org/starOfficeXML.html

OpenOffice.org XML: xml.openoffice.org

Ruby: linux.oreillynet.com/pub/a/linux/2001/11/29/ruby.html

RubyForge: www.rubyforge.org

“Thinking XML: The open office file format”: www-106.ibm.com/
developerworks/xml/library/x-think15

XPath: www.w3.org/TR/xpath

James Britt runs Neurogami, LCC, a software and design company in Scottsdale,
Arizona. He has coauthored a book on XML for the Wrox Press, written various
articles on software development and gave a presentation on Ruby and XML at

http://dublincore.org
http://www.math.umd.edu/~dcarrera/openoffice/tools/ooo_extract.html
http://xml.coverpages.org/starOfficeXML.html
http://xml.openoffice.org
http://linux.oreillynet.com/pub/a/linux/2001/11/29/ruby.html
http://www.rubyforge.org
http://www-106.ibm.com/developerworks/xml/library/x-think15
http://www-106.ibm.com/developerworks/xml/library/x-think15
http://www.w3.org/TR/xpath

the Third International Ruby Conference in Austin, Texas. He can be reached at
jamesgb@neurogami.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jamesgb@neurogami.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 GUI Scripting with Tcl/Tk

Derek Fountain

Issue #119, March 2004

Tcl/Tk may not look very modern, but it has handy features such as variables
that automatically take on the value of a widget. Tcl/Tk remains the tool of
choice for many script writers.

Although many Linux developers are only now discovering the combination of a
scripting language and a graphical user interface (GUI) toolkit, this sort of
development environment is not new. The largely unsung forerunner to
projects like PyQt and pyGTK is Tcl/Tk, the first footprints of which can be
traced back to before Linux even was created. Supported by an enthusiastic
community, Tcl/Tk quietly and efficiently has been providing cross-platform GUI
scripting to UNIX, Windows and Macintosh developers for many years.

The language itself currently is up to version 8.4.5.0, and the Tcl/Tk application
development tool of choice, Visual Tcl, recently has been updated to version 1.6
after two years of development. This article looks at the language, toolkit and
Visual Tcl and describes how they can be used to produce a neat solution to a
real requirement.

 An Overview of Tcl/Tk

Although somewhat trampled in the stampede script writers made toward Perl
when a scripting language was required to drive the emerging Internet, Tcl still
is a technical match for Perl, Python or any other comparable language. Often
described as the best kept secret of the Internet, it is a free (in all the best
senses of the word), full-featured language driven by a byte code compiler that
produces performance on a par with any of its peers. It is used in all the places
other scripting languages are used: system administration, task automation,
server back ends and, as we shall see shortly, application development.

As a programming language, Tcl is exceptionally easy to learn. In contrast to the
complicated feature sets and syntaxes of Python and Perl, Tcl is procedural and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

straightforward in nature. The entire syntax is described in exactly 11 rules,
from which the whole language is built. Ironically, it's this simplicity that
sometimes confuses people who are new to Tcl. An experienced programmer
can learn to read Tcl scripts in ten minutes and write them inside an hour. A
beginner doesn't take much longer.

Documentation is top rate, coming in the form of comprehensive and well
written man pages. A complete HTML package of the documentation also is
available. If man pages are a little intimidating for the new user, a decent
selection of books exist for Tcl/Tk, the pick of which probably is Brent Welch's
recently updated Practical Programming in Tcl and Tk from Prentice-Hall PTR.
Also worth a mention is the Tcler's Wiki, which is one of the largest and best
supported wikis anywhere on the Internet.

Tcl philosophy centers on one idea: it's an extendable language. Most
languages allow a developer to write functions and procedures, but Tcl goes
much further. Tcl allows developers to extend the entire language with new
commands and functionality, up to and including adding fundamental language
structures such as object orientation. The Tk toolkit actually is another optional
extension to the Tcl language, which happens to provide a whole set of Tcl
commands to create, drive and control GUI widgets. Like dozens of other
extensions, Tk has long been included in the Tcl core distribution and now is
seen more as a part of the language than an extension of it.

 The Project

In order to test-drive the latest versions of Tcl/Tk and Visual Tcl, I needed a
small project to develop. A personal requirement provided just the thing. Since
getting a digital camera, I've often wanted to throw a couple of pictures onto a
Web page quickly so that friends and family could see them. A full-blown Web
gallery application would be overkill; I need only the ability to select one or two
image files, add a few lines of text and then have a single Web page appear that
I can upload to a Web server. Figure 1 shows an example of the sort of page I
would like to be able to produce.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f1.large.jpg

Figure 1. The task is to produce simple Web pages containing images and a small amount of
text quickly, like this one.

This sort of project is an ideal candidate for a GUI-based script. It's a fairly
simple task that isn't dependent on speed but that clearly benefits from having
a graphical user interface. The function of the GUI is simple: present users with
an interface where they select some image files, viewing them if necessary, and
collect a few lines of accompanying text. The script then can use a standard tool
to produce the HTML page. In this case, that tool is the XSLT processor from the
libxml2 package found on almost every modern Linux system.

The rest of this article looks at how the combination of Tcl/Tk and Visual Tcl
were used to develop this little application rapidly. Figure 2 shows the final
script in action; the code can be downloaded from the link provided at the end
of this article.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f2.large.jpg

Figure 2. The script is running, with the image display window open.

 Getting the Software

Most Linux distributions come with Tcl/Tk. However, I always install and use the
latest version of ActiveTcl from ActiveState, Inc. Apart from being up to date
and professionally presented, it provides a standard Tcl package with a lot of
useful extensions. If you know your users are using ActiveTcl, you know exactly
which extensions they have on their machine and therefore can guarantee your
script can run. I encourage anyone who wants to run the project in this article
to download and install ActiveTcl-8.4.5.0 or later, as that's what I used for
development. ActiveTcl comes with its own installer, and if you install it in, for
example, /opt/ActiveTcl-8.4.5.0, it doesn't interfere with any existing Tcl/Tk
installation. If you already have a Tcl/Tk package in /usr/bin, ensure you set an
early entry in your user account's PATH to point to the ActiveTcl bin directory.

Visual Tcl is available from SourceForge and also comes with its own installer.
Many Linux distributions include it, but make sure you have the latest version.

Developing a Tcl/Tk Script

A common approach to Tcl/Tk scripting is to start by designing the GUI. This
process allows the developer to think through all the features the application
requires, and it produces a solid framework on which those features can be
built. When things start getting complicated, this approach breaks down and
something more formal, like a Model, View, Controller pattern, is required. But
for small applications, such as my Web page, or for rapid prototyping, getting a
GUI together is a good starting point. So I'll start with Visual Tcl.

 A Look at Visual Tcl

The days when developers would sit at a text editor manually arranging
buttons, listboxes and other widgets by brain power alone are pretty much
gone. This is the sort of job that should be done with a graphical tool. Dragging

https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f2.large.jpg

and dropping widgets makes development much quicker, especially for
beginners.

Visual Tcl provides exactly these sorts of facilities and then some. In fact, it
doesn't seem too sure whether to behave like a cut-down integrated
development environment (IDE). It occasionally offers a text editing window
where the user can write the Tcl code that forms the actual application, rather
than limiting itself to dealing with the development of the GUI. On the other
hand, it doesn't offer a debugger or other traditional IDE features, so it's
difficult to justify calling it a real IDE. I dealt with this confusion of personality by
going into the configuration dialog for the application and switching off many of
the features that seem to get in my way (Figure 3).

Figure 3. Visual Tcl is highly configurable.

Instead I chose to write the bulk of the application logic in my favoured
environment (XEmacs) and simply used the output from Visual Tcl as a library
that creates the GUI for my script. Credit goes to Visual Tcl for being flexible
enough to be used in the way of my choosing. Listing 1 shows my wrapper
script, which is the starting point for the application code itself.

Listing 1. A simple wrapper to keep the Visual Tcl code (in gui.tcl) separate from

the main script. The #! line weirdness is a common way of starting a Tcl/Tk

script.

#!/bin/sh

the next line restarts using wish \
exec wish "$0" "$@"

#
My own procedures and "pre-gui" code will go here
#

Load and run the GUI code created by Visual Tcl
#
source gui.tcl

#
Any "post-gui" code I need can go here
#

Once I understood the way I wanted to work with the tool, it didn't take too
long to produce the output I wanted. Widgets are placed using a simple point-
and-click interface, and a separate Attribute Editor window allows for the fine
detail of widget behavior to be tweaked and fiddled with to the heart's content.
Tk widget layout devices also are easy to control when you understand them.
Figure 4 shows the Visual Tcl development environment.

Figure 4. Visual Tcl appears rather cluttered even on a large screen. It's not too hard to use
though.

Visual Tcl produces executable Tcl/Tk code, which is loaded and edited directly.
The routines that load the Tcl/Tk code are surprisingly tolerant, which means
the generated code can be edited and tuned independently by the developer
before being returned to Visual Tcl for further work.

Visual Tcl's biggest problem is the dated nature of the toolkit behind it. Tcl/Tk
offers only the basic building blocks of widgets. Things like comboboxes and

https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f4.large.jpg

notebooks aren't available in Tk. Fortunately, a number of extensions to Tcl/Tk
provide these mega widgets, and Visual Tcl supports them all. The drawback is
that for the final script to run correctly, the target machine needs the mega
widget extensions installed. For this project I made use of the incr tcl widget
set, and the Tcl/Tk installed as part of most Linux distributions may not contain
this set. Hence my recommendation of the ActiveTcl Tcl/Tk distribution. In fact,
my SuSE 8.1 system does include incr tcl but strangely doesn't include the
extension required to load JPEG images—a rather glaring omission on the part
of SuSE I'd have thought.

Anyone who has used a really slick GUI builder tool like the excellent Qt
Designer can tell you that Visual Tcl needs more work. It's slow on my dual
PIII-500 machine to the point of being irritating, and it has more than its share
of usability issues and bugs, although these should be cleared up in the point-
one release. The bottom line, though, is Visual Tcl did the job I required. The
script it generates is readable enough to be fine-tuned by hand, and anything
the code does can be overridden by more specific code in the main application.
My GUI completed, I moved on to the application development side of the
project.

 Building the Application

The thing that sets Tcl apart from more modern GUI scripting solutions is the
way the Tk toolkit interacts with the Tcl code that does the work. Packages such
as GTK or Qt are low-level libraries, written in C or C++. The script-level bindings
to them work well enough, but there's always a big step down from the
scripting language into the API of the GUI toolkit. Developers really need to
understand the widgets with which they're working and must know how to
configure and interrogate them using low-level calls directly to the widgets
themselves.

The relationship between Tcl and Tk is much more of a peer-to-peer nature.
The GUI toolkit operates at the same level as the language driving it, which
makes the combination easy to work with. Take, for example, the listbox widget
that contains the list of images to put in the Web page. In Visual Tcl, an attribute
of the listbox widget, called the listvar, is presented, and I set it to a variable
called ::imageList. ::imageList is a list variable in my Tcl code, and Tcl/Tk ensures
that its contents always are reflected in the listbox widget. If I add, move or
delete an item in that list variable, the contents of the listbox widget are
updated immediately and automatically to display its contents. The code that
handles the image list doesn't access or interact with the GUI at all. It simply
keeps a single list variable in the correct state, safe in the knowledge that Tcl/Tk
does the rest. Figure 5 shows this relationship.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f5.large.jpg

Figure 5. Setting the listvar attribute in Visual Tcl (left) ensures the generated code (middle)
causes the onscreen widget (right) to respond immediately to any changes made in the
named variable.

More direct access to the widgets sometimes is required. Under these
circumstances, Visual Tcl makes use of aliasing. In Tcl/Tk, the name of a widget
depends on where it is in the widget tree. That name changes as container
widgets, such as frames, are added and removed. To prevent the script writer
from having to keep track of the full names of the important widgets, Visual Tcl
allows the user to specify an alias—a short, easily memorable name by which
the widget always is known. These short names can be looked up in a global
associative array (also known as a hash or dictionary), so access to the widgets,
wherever they might end up, always is easy. For example, I gave the
Introduction text widget the alias IntroText. To fetch the text currently in that
widget, the code in Listing 2 can be used.

Listing 2. Fetching the Contents of an Aliased Widget

...
set introWidget $::widget(IntroText)
set text [$introWidget get 1.0 end]
...

The ::widget array is provided automatically by the Visual Tcl generated code, so
fetching the real name of the text widget is simple. Asking the widget to provide
its current text, from line 1 character 0 to the end, also is easy.

The image display in the viewer window actually is a label widget in the center
of the dialog. Tk can load an image from disk and create a pixmap from it with

https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7225f5.large.jpg

one line of code. When the user selects a new image file, a pixmap is created
from it and a single command is used to set the label widget to show that
image (Listing 3). In the actual script, I store the loaded pixmaps in a cache. This
makes switching from one image to another and back again much sharper.

Listing 3. The image is loaded from the disk, and then the label widget is

configured to show that image (Tk labels show images as well as text). The

image appears on screen immediately.

...
set loadedImage [image create photo -file $filename]
$::widget(ImageLabel) configure -image $loadedImage
...

When the user clicks the Publish button, a Tcl function is called that creates the
Web page. The workings of this code aren't especially relevant here. Suffice it to
say that Tcl allows generation of an XML DOM using the TclXML extension and
then allows the callout to the libxml2 XSLT processor, which generates the
HTML. Getting a specialist package to do the hard work is, of course, the ace up
the script writer's sleeve.

 The Shortcomings of Tcl/Tk

Although the Tcl/Tk script works nicely, it's hard to ignore the obvious gulf in
quality between the appearance of a Tcl/Tk script and a more modern Qt or
GTK one. Qt and GTK-based programs look much sharper than those using the
Motif style of Tk widgets, plus they are themeable, whereas Tk isn't. Also
compare built-in features, such as the file selector dialog—Tk's is no better than
GTK's, and both are embarrassed by Qt's. Work continues in the Tcl community
regarding these sorts of issues, but as with many mature technologies,
improvements are slow in coming for fear of breaking existing code.

 Conclusion

Tcl/Tk is the oldest of the GUI-enabled scripting languages in common use
today, but it doesn't enjoy the monopoly position it used to have. Python,
coupled with GTK or Qt, now provides a more contemporary solution to many
of the problems for which Tcl/Tk used to be the natural choice. Both Tcl/Tk and
Visual Tcl have some ground to make up in terms of looks, features and
desktop integration. Yet, the simplicity of application development offered by
the mature and superbly integrated combination of the Tcl language and the Tk
toolkit still is second to none. If you have a simple scripting task that would
benefit from a GUI, where speed and cost of development are important, Tcl/Tk
still should be near the top of the list of contenders for the job.

Resources

ActiveState Tcl Web Site: www.activestate.com/Products/ActiveTcl

Incr Tcl: incrtcl.sourceforge.net/itcl

Practical Programming in Tcl and Tk, 4th edition, by Brent Welch. Prentice-Hall
PTR: www.beedub.com/book

The 11 Rules of the Tcl Syntax: www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm

Source for the Script Developed in This Article: ftp.linuxjournal.com/pub/lj/
listings/issue119/7225.tgz

The Tcler's Wiki: mini.net/tcl

Tcl/Tk Headquarters: www.tcl.tk

Tcl/Tk man Pages, On-line and Downloadable: www.tcl.tk/man

Visual Tcl: vtcl.sourceforge.net

XSLT for libxml2: www.xmlsoft.org/XSLT.html

Derek Fountain is a freelance software developer, specializing in UNIX and
Linux. He strongly believes in the adage of “make it as simple as possible, but
no simpler”. That's why he deploys scripting solutions wherever possible. He
lives in Perth, Western Australia.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.activestate.com/Products/ActiveTcl
http://incrtcl.sourceforge.net/itcl
http://www.beedub.com/book
http://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.htm
https://secure2.linuxjournal.com/ljarchive/LJ/listings/119/7225.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/119/7225.tgz
http://mini.net/tcl
http://www.tcl.tk
http://www.tcl.tk/man
http://vtcl.sourceforge.net
http://www.xmlsoft.org/XSLT.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Building Panoramic Images in The GIMP

Andrew Burton

Issue #119, March 2004

Build big scenic images from your small snapshots using this easy plugin for
The GIMP.

Panoramic landscapes make for some amazing photos. There's nothing like the
feeling of relaxation and tranquility gained by gazing over the vivid images of
sweeping wilderness, minus the hassle of actually getting there. Using a digital
camera, it's possible to stitch photos together to simulate the expensive effects
of a landscape filter. After I'd bought my digital camera (a Nikon Coolpix 4300)
and set it up to work under Linux, getting software to stitch photos together
was my next task.

The Nikon Coolpix 4300, like most digital cameras, comes with software on CD
to perform rudimentary photo-stitching. Unfortunately, the software is not for
Linux. Using Google, it was hard to find anything that would do the job under
Linux, until I remembered The GIMP. There are two ways to use The GIMP to
create a panoramic photo, easy and hard. The hard way is to set up layers out
of the different photos, edit filter and layer masks, mess about with
transparency and layer them together, manually.

The easy way is to use Pandora. Pandora is a plugin for The GIMP that takes
photos and tries to match the edges of the photos together, using a best guess
at where one photo ends and the next begins.

Figure 1. A panorama of suburban Japan. The consistency of the light has made this an easy
set of photos to stitch together.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f1.large.jpg

 Installation

Because Pandora is a GIMP plugin, to install it, you need The GIMP version 1.2
or 1.3, as well as Gimptool, which is provided in The GIMP development
package. Untar Pandora to a working directory, cd into it, and run make.
Pandora detects which version of The GIMP is available and installs it
automatically.

 Using Pandora

Fire up The GIMP. Pandora should now be available under the Extensions (Xtns)
menu as Make Panorama. Select the photos you want to stitch together and
click the Add File button; under The GIMP 1.2, you need to add the photos
individually, as they should appear from left to right. It's possible to create
vertical panoramas, but you need to make use of the rotate feature, as Pandora
works horizontally.

Figure 2. Selecting the Images to Be Incorporated in the Panorama

https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f2.large.jpg

Pandora can be set with some options before it does its work. The option to
feather the layers creates a fade toward the edge of the photos, where the
photo becomes slightly translucent. Keep it toggled to create a semi-
transparent fade at the sides of each photo, making them easier to line up.

Related to feathering is overlap. Often, photos have minor differences in sky
colour; overlap helps to blend the difference so it isn't noticeable. The higher
the overlap, the further in from the edge of the photo the feathering takes
effect.

Once you're happy with your choices, click OK and Pandora starts to perform its
magic.

When the processing has finished, you are presented with a set of layers, one
for each original photo. The layers, represented with a dotted line at the edge,
should be lined up roughly to what Pandora thinks are the common portions of
each picture. Because Pandora is mostly a means of automating the layer
creation and feathering, your panorama likely may require a bit more work
before you can start impressing your friends.

Figure 3. The selected layer is highlighted, and we can move it using the Move layers tool
(selected).

Using the Move layers and selections tool (represented by the four-directional
arrow), you can select a layer and move it, by holding the left mouse button
down while moving the mouse. The easiest way to line the images up is to find
a common landmark at the edge of each photo—mountains or trees are ideal—
and use these as the anchor around which the images are aligned.

Once the layers are lined up to your satisfaction, you may notice that the
pictures have moved out of their perfect vertical alignment, resulting in a
jagged top and bottom edge.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f3.large.jpg

Right-click in the image window, and choose Layers→Flatten Image. This
merges the layers into one. If you haven't finished lining up the edges, you can
undo this last action. Now, using the Select rectangular regions tool, select a
region from the bottom left corner to the top right, ignoring all white space
caused by the jagged edges mentioned earlier. Copy into a new image, save
and you're done.

 Your Mileage May Vary

Obviously, Pandora can't cope well in every circumstance. Different amounts of
light between photos, particularly when your photos include sky or water, make
it difficult to create a consistent picture. This is most notable when shooting
toward the sun. Moving subjects, such as cars or people, can result in the
occurrence of ghosted images. Cityscapes containing a lot of right angles can
emerge imperfectly when the angle of each photo is not perfect. Finally, if the
source photos are not ideal, your results won't be either. A fixed tripod or at
least holding the camera close to you with your elbows against your body gives
a standard height and angle that can make your photos much easier to line up.
The better your source photos, the less effort you need to use in making your
panoramas fantastic.

As with most things, you can find tutorials and hints on creating panoramas on
the Net. By using Pandora, it's possible for a rank amateur to come up with
some great results, even with a limited knowledge of The GIMP and layers. The
picture in Figure 4 shows a successful scene, where the sky and water tones are
consistent and the edges are lined up.

Figure 4. Sydney from Cremorne Point—water and buildings are difficult, but the rewards are
worth it.

Resources

Pandora is a small download from the Shallow Sky Web site:
www.shallowsky.com/software/pandora.

Panoguide is the definitive resource for panoramic photos:
www.panoguide.com.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7295f4.large.jpg
http://www.shallowsky.com/software/pandora
http://www.panoguide.com

Red Skies at Night (previously mentioned in LJ, April 2003) has some great GIMP
tutorials for digital photography enthusiasts: cs.uhh.hawaii.edu/~jeschke/
photography/articles/gimp/tutorials.shtml.

Andrew Burton (adb@iinet.net.au) lives in Sydney, Australia, where there is
plenty of inspiration for taking panoramic photos.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://cs.uhh.hawaii.edu/~jeschke/photography/articles/gimp/tutorials.shtml
http://cs.uhh.hawaii.edu/~jeschke/photography/articles/gimp/tutorials.shtml
mailto:adb@iinet.net.au
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Designing Tip Windows

Hugh Fisher

Issue #119, March 2004

If you're itching to teach users how to use your application, make a tip window
they won't want to turn off.

The first thing you see in many desktop applications is the “Tip of the Day” or
“Did You Know?” window. I've seen an increasing number of tip windows on
recent Linux systems, so here is a discussion of the most effective way to
implement them. A tip window is not the same as a splash screen, which is the
window that is briefly displayed while a program loads, links, configures and
generally gets itself ready. The program closes the splash screen itself without
any user action.

Even splash screens have variations. Usually they are created by desktop
applications, but bootloaders and graphic drivers, such as NVIDIA, also can
have them. Microsoft Office products typically have splash screens full of
intimidating legal warnings. Adobe does nice splash screens: the legalese is
low-key, there's a nice piece of artwork and a small text field shows the names
of extensions and plugins as they are loaded. If you have an attractive splash
screen for your application, document somewhere the location of the PNG logo
it displays. You may be lucky and the user will put it on a Web page.

Why have splash screens? In an ideal world, we wouldn't. You can go a long way
as a user interface designer by remembering only a few rules, among them the
magic numbers 100ms and two seconds.

For most purposes, anything the computer can do in 100ms or less is perceived
as instantaneous. If you are writing the pilot training simulator for a jet fighter,
you have to be more precise, so if you can get your application to launch in
100ms, you've done a fabulous job, users will love your product, and a splash
screen would be superfluous or might even be considered an illegal subliminal
image.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The two-second limit is, on average, how long the computer can keep users
waiting before breaking their concentration and making them aware that their
time is being wasted by a machine. A launch time under two seconds ought to
be possible for most desktop applications, but sometimes it is out of the
author's control. The splash screen is meant to hide the delay.

A tip window is different. It tries to be useful rather than merely decorative, and
it has to be dismissed by the user. It doesn't vanish of its own accord. The
introductory sequences in many games are tip windows. Visually, they look
quite different, but the function is exactly the same. You watch the briefing or
backstory or whatever until you've learned what you need and click to continue.

Tip windows have become common in recent Linux distributions, matching
Macintosh and Windows environments. And, as in the Mac and Windows
worlds, 99 out of 100 users click the Don't Show Again button within a few days
and never look at the tips again. This is a shame, because tip windows really are
a good idea. We all know nobody reads manuals. A tip window gives you, the
application developer a chance to walk the user gently through the capabilities
of the application, presenting information in small convenient chunks. It
doesn't even cost users any time; they have to sit through the launch delay
anyway.

How can we encourage users not to turn off the tip window? Well first, why do
they? Here it's useful to discover what is going on with a GOMS keystroke
model. (GOMS—goals, objects, methods, selection—is a way of analyzing user
interfaces and interaction.) Applied to tip windows, the GOMS keystroke model
shows that the tip window has introduced a second unnecessary action to the
launch process.

Taking a word processor or text editor as our example, the user's goal is to
write something. The action is to click or double-click the appropriate icon. With
no tip window, only a splash screen, no further action is required and users can
start typing as soon as the application launches. The tip window, though, forces
users to carry out a second action to dismiss it. The annoyance of this extra
action is why tip windows are turned off; it has nothing to do with the
helpfulness of the content.

If you're not convinced that merely one extra click can make such a difference,
consider that “nagware” in the Mac/Windows environments relies exactly on
this behavior. These applications are shareware and require a license fee but
are free to download. Every time the application launches it shows a window
reminding that you haven't paid yet. You have to dismiss this window every
time. Only after you pay will the author send you a code that disables the nag
window. It works because it is annoying.

Turning the tip window back into a splash screen and closing it as soon as the
application has launched would remove the annoyance. However, only speed
readers would be able to absorb the tips, which rather defeats the purpose. A
fixed delay of a few seconds would annoy people in a hurry. The right thing to
do is to close the tip window as a side effect of the user's first action. More
technically, the first mouse entry, motion, button event or key event, closes the
tip window and is then processed as normal by the application. Now the user
can pause to read the tip window if it looks interesting or simply start working if
not.

This isn't an original idea, by the way. Start a copy of Emacs or xemacs with no
filename given. You get a blurb about Emacs, the Free Software Foundation and
how to get more information, but the first key you press clears it all and is
inserted into a new document. Perfect.

There is one small new problem: if the tip of the day is particularly fascinating,
how can the user save it? They can't copy the text, because whatever they try
will close the tip window. So, the application should remember which tip was
displayed at launch and set the on-line help system to always open with that
same text as the initial contents.

Resources

For the full GOMS model: Card, Stuart K., Moran, Thomas P., Newell, Alan. The
Psychology of Human-Computer Interaction, Lawrence Erlbaum Associates,
1983.

For the useful keystroke level subset, plus many interesting and provocative
ideas: Raskin, Jef. The Humane Interface, ACM Press, 2000.

Hugh Fisher (hugh.fisher@anu.edu.au) is a system administrator, 2-D/3-D
interactive graphical programmer and part-time lecturer. He has strong
opinions on the usability of Linux systems and hopes to inflict these on a wider
audience by writing for Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Fast Convenient Mail for Travel: OfflineIMAP

John Goerzen

Issue #119, March 2004

Linux laptop users, try the mail solution that combines the advantages of fast
local mail folders and a server-based IMAP repository.

E-mail is for many people the single-most important feature of the Internet. We
read e-mail at home, at work, while traveling and on many different computers.
But it's difficult to see the same mail from all of those places. If you delete a
message from home, it may not show up as deleted when you look at the same
account from work. Worse, you might be able to view a given message on only
one machine. And if you sometimes want to download mail to your laptop and
read it without any Internet connection, things get even more complex.

Some people try to solve these problems by using IMAP in their mail clients. But
IMAP can be slow and poorly supported; especially on a slow connection, it
tends to make mail reading unpleasant. I recently faced exactly this situation—I
was a very annoyed programmer. Many programs come about because a
programmer somewhere was annoyed. Thus, I wrote OfflineIMAP.

 About OfflineIMAP

OfflineIMAP is designed to let you read the same mailbox from many different
computers, with or without an active Internet connection. It performs a bi-
directional sync, which means that any changes you make eventually are
reflected on all your machines. In its most common form, OfflineIMAP works by
connecting to an IMAP server and synchronizing your folders to a series of
Maildir folders on your local machine. Despite its name, OfflineIMAP is useful
even if you never read mail off-line.

 Installing OfflineIMAP

OfflineIMAP installation is easy. Visit the OfflineIMAP home page at quux.org/
devel/offlineimap, and download the .deb or the tar.gz file. Debian users simply

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://quux.org/devel/offlineimap
http://quux.org/devel/offlineimap

can run dpkg -i offlineimap.deb to install it, and then use apt-get -
f install to fix any missing dependencies. If you're not running Debian,
make sure you have Python 2.2 or above installed. If you do not have Python
already, check with your distribution or visit www.python.org to download it.

When you're ready to install OfflineIMAP, run tar -zxvf
offlineimap_4.0.2.tar.gz to unpack the source. Change into the new
directory and then, as root, run python setup.py install. If you get
stuck, the OfflineIMAP manual contains some more installation hints.

 Basic Configuration

OfflineIMAP configuration is done in the ~/.offlineimaprc file. That file has three
different sections: general, which controls overall behavior of OfflineIMAP;
repository, which describes a place where mail is stored; and account, which
describes how two repositories are synchronized together. A basic, simple
setup requires only a small configuration file. Here is an example:

[general]
accounts = MyMail

[Account MyMail]
localrepository = MyMailLocal
remoterepository = MyMailRemote

[Repository MyMailLocal]
type = Maildir
localfolders = ~/MyMail

[Repository MyMailRemote]
type = IMAP
remotehost = hostname.example.com
remoteuser = my-username-goes-here
ssl = yes

This example defines one account, MyMail. The MyMail account is synchronized
from the hostname.example.com server to the ~/MyMail directory on your local
machine. All remote folders are copied. If your IMAP provider does not support
SSL encryption, delete the ssl = yes line. Now, run offlineimap. You are
asked for your password, and then it synchronizes your mailboxes once and
exits.

 Continuous Synchronization

If you're connected to the Internet while you read your mail, you can have
OfflineIMAP continually keep your local tree synced up with the server. To do
this, simply add an autorefresh line to your account section. For instance,
you might modify your account section to look like this:

[Account MyMail]
localrepository = MyMailLocal
remoterepository = MyMailRemote
autorefresh = 5

http://www.python.org

When you run OfflineIMAP now, it synchronizes your mailbox like before. But
when it's done, instead of exiting, it keeps running, synchronizing your mail
every five minutes.

 Synchronizing Multiple Accounts

OfflineIMAP is quite capable of synchronizing multiple accounts. For instance,
you might want to be able to read mail from both your work e-mail and your
home e-mail. To do this, add one account and two repository sections for each
account, making sure to use unique names. Then, add the account to the
accounts list in the general section. Separate the names by commas.

On the local side, you should make sure that each account synchronizes into a
different directory. Otherwise, confusion and corruption may occur.

 Boosting Performance

OfflineIMAP's defaults, as illustrated with the examples above, are quite
conservative. It tries to work with as many IMAP servers as possible right out of
the box, so the advanced features that occasionally cause trouble are disabled
by default.

If you have many mail folders or get a lot of mail in each folder, the
synchronization process can be slow. This is especially true if you are using a
high-latency Internet connection, such as a modem or satellite. To speed things
up, OfflineIMAP is capable of establishing multiple connections to your server
at once. It then is able to perform tasks in parallel. For instance, OfflineIMAP
might download three messages and synchronize two folders simultaneously.

OfflineIMAP offers several configuration options. First, you should add a line
such as maxsyncaccounts = 5 to your general section. This enables
OfflineIMAP to synchronize multiple accounts simultaneously, which is almost
always a good thing. Second, in the repository section for the remote part of
each account, you can control how much parallelism to use. For instance, you
might add a line saying maxconnections = 3 to the MyMailRemote
repository section in our example. This allows OfflineIMAP to establish up to
three connections to the server.

If you are performing continuous syncs with the autorefresh option described
above, there's another source for delay. Each time OfflineIMAP starts syncing
an account, it connects to the server. When it's done with that particular sync, it
disconnects. Establishing these connections can be slow in many cases.
OfflineIMAP provides an option to keep the connections open even between
syncs. The problem is that some servers disconnect clients that are idle for a
long time. To combat that problem, OfflineIMAP also can send little bits of

traffic every so often to make sure the timers don't expire. To take advantage of
these features, add lines like these to the remote repository section:

holdconnectionopen = true
keepalive = 60

Keepalive is given in seconds, whereas autorefresh is given in minutes.

 User Interfaces

OfflineIMAP ships with many different user interfaces. The two most common
are Tk.Blinkenlights and Curses.Blinkenlights. The former presents a small
graphical window on OfflineIMAP's progress on your X desktop. The latter runs
in a terminal and provides a nice monitor of progress (see Figures 1 and 2).

Figure 1. The Tk.Blinkenlights GUI Interface for OfflineIMAP

Figure 2. The Curses.Blinkenlights Interface, Running in a Terminal Window

https://secure2.linuxjournal.com/ljarchive/LJ/119/7232f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7232f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7232f2.large.jpg

With the Tk.Blinkenlights interface, you can click on the Sync immediately
button to force the account to synchronize right away. You can do the same
thing in the Curses.Blinkenlights interface by pressing the number next to the
account name. Both interfaces display a log of current activities. You also get a
mesmerizing display of flashing status lights so you won't get bored while
watching the synchronization happen.

The TTY.TTYUI interface can run without any Curses support—it uses no color
or terminal controls. It can read password input, but it provides no other
capabilities for interaction.

Noninteractive.Basic is a user interface designed never to receive any input
from the user. It can, however, display status messages. If you need a password
in order to log in to a remote server, add a line such as remotepass =
mypassword to the remote repository section of the configuration file.

Finally, Noninteractive.Quiet goes one step further and does not output status
messages. Some people like to run OfflineIMAP from a cron job, and
Noninteractive.Quiet is good for that.

You can specify which user interface should be used in one of two ways. First,
you can use the -u option on the OfflineIMAP command line. For instance, you
might run offlineimap -u Curses.Blinkenlights. Alternatively, you
can add a ui line to your general section, like this:

ui = Tk.Blinkenlights, Curses.Blinkenlights,
 TTY.TTYUI

With this configuration, OfflineIMAP first tries the Tk.Blinkenlights interface. If
your Python doesn't support Tk, or if you are not running under X, it then tries
the Curses.Blinkenlights interface. If that too fails, the TTY.TTYUI interface is
tried. If even that does not work, OfflineIMAP aborts with an error.

 Selecting Folders

By default, OfflineIMAP asks your remote IMAP server which folders are
available to you and synchronizes all of them. A folderfilter option can be
added to your remote repository section to restrict what is brought over. The
folderfilter option is a tremendously powerful option. Unlike the other options
you've seen so far, folderfilter actually expects to be handed a Python function.
The function takes one argument and should return true if that folder is to be
included.

Python provides a feature called lambda that lets you create simple functions
on the fly. You thus can construct some complex rules. Here are a few

examples. You can specify a set of folders you want to synchronize. You can use
the Python in operator to test whether the folder in question is in the list, like
this:

folderfilter = lambda foldername: foldername in
 ['INBOX', 'Sent Mail',
 'Received']

This code synchronizes only the three named folders. Notice the indentation on
the second and third lines—if you indent them, the configuration parser treats
them as part of a single statement.

You also can specify folders to exclude:

folderfilter = lambda foldername: foldername not in
 ['Spam', 'Junk']

In this example, all folders except Spam and Junk are synchronized.

You also can use regular expressions, such as:

folderfilter = lambda foldername:
 not re.search('(^Trash$|Del)', foldername)

This input causes the folder named Trash and all folders containing the text Del
to be excluded.

 Changing Folder Names

Sometimes, you may want to alter the folder names before storing the folders
on the local side. OfflineIMAP provides an option called nametrans, also
specified in the remote repository section, to do exactly that. Some IMAP
servers, such as Courier, add “INBOX.” to the start of all folders, which can be
annoying. The nametrans feature lets you get rid of that. Here's an example:

nametrans = lambda foldername:
 re.sub('^INBOX\.', '', foldername)

Like folderfilter, nametrans takes a Python expression. This expression receives
a folder name as an argument and should return the new and improved folder
name. In this example, any folder whose name starts with INBOX. gets the
leading INBOX. removed. It's important to remove not only the leading INBOX;
the folder INBOX itself does exist, so you'd wind up with an empty folder name
(and that's a bad thing).

It's also important to be careful with your nametrans rules. You must make
sure that nametrans returns a different value for each folder. If it returns the
same thing for two different folders, bad things can happen.

In case you're wondering, nametrans does not change folderfilter. That is, your
folderfilter rules operate on the folder names before nametrans takes effect.

 Synchronizing Two IMAP Servers

Some mail readers don't support Maildir hierarchies well. For them,
OfflineIMAP introduced a new feature: the ability to synchronize two IMAP
servers directly. The idea is this: you install an IMAP server on your local
machines. Your mail reader, which already may have slow IMAP support, is
fairly speedy in accessing an IMAP server located on your own machine. The
mail reader never needs to know that OfflineIMAP is sticking the messages in
the folders.

To make this happen, you need to make a few simple changes to your local
repository section. First, change the type from Maildir to IMAP. Secondly,
remove the localfolders and other Maildir information and instead specify IMAP
configurations, such as remotehost and remoteuser. Finally, delete your
~/.offlineimap directory to make sure that none of the old status information
lingers around.

Certain options still are supported only in the remote section—nametrans and
folderfilter are two examples—but the options relating to the connection itself
are supported in both places. You can, in fact, have your local IMAP server on a
machine that is remote to you.

 Conclusion

OfflineIMAP is a powerful mail solution. I've introduced you to the basics of
OfflineIMAP in this article, but there still is more you can do with it. To learn
more, check out the OfflineIMAP home page and the example configuration
files. If you're a Python programmer, you'll find some nice hooks for Python
code as well.

John Goerzen has been programming for Linux since 1996 and currently is vice
president of Software in the Public Interest, Inc. He welcomes your comments
at jgoerzen@complete.org.

Archive Index Issue Table of Contents

 Advanced search

mailto:jgoerzen@complete.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 Power Management in Linux-Based Systems

Srivatsa Vaddagiri

Anand K. Santhanam

Vijay Sukthankar

Murali Iyer

Issue #119, March 2004

Implementing power management in any system is a complex task. Here's how
to manage your system's transitions from normal run state to power-saving
modes.

Power management (PM) software is a crucial component in battery-powered
systems, such as PDAs and laptops, because it helps conserve power when the
system is inactive. As a simple example, power may be conserved by switching
off the display when a system is inactive for some time. Conserving power in
this manner extends battery life, so one can work more hours before having to
recharge the battery.

Hardware support is vital for power management to work, and software
intelligently exercises that support. The degree of power management support
available in hardware varies from device to device. Some devices, such as a
display, simply provide two power states, on and off. Other devices, like the
SA1110 CPU, may support more complex power-saving features, including
frequency scaling.

Implementing power management in any system is a complex task, considering
that several non-interacting subsystems need to be brought together under a
single set of guidelines. This article explains how power management works in
Linux (2.4.x) and how it can be implemented in battery-powered systems based
on an APM standard, at both the device driver and application levels.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Two Power Management Standards

Power management for computer systems has matured over the years and
several standards exist. The two popular ones are advanced power
management (APM) and advanced configuration and power interface (ACPI).
APM is a standard proposed by Microsoft and Intel for system power
management, and it consists of one or more layers of software to support
power management. It standardizes the information flow across those layers.
In the APM model, BIOS plays a key role. ACPI is the newer of the two
technologies, and it is a specification by Toshiba, Intel and Microsoft for
defining power management standards. ACPI allows for more intelligent power
management, as it is managed more by the OS than by the BIOS. Although both
standards are more popular in x86-based systems, it is possible to implement
them in other architectures.

 Power Management Implementation

Before implementing power management, it is important to understand what
hardware support is available for saving power. One of the important goals of
power management software is to keep all devices in their low power states as
much as possible.

A possible approach for implementing power management is first to define a
power state transition diagram. This defines several power states for the
system and also defines the rules and events governing state transitions.

As an example, consider a PDA that has the following devices: Intel SA1110
CPU, real-time clock, DRAM, Flash, LCD, front light, UART, audio codec,
touchscreen, keys and power button. The Intel SA1110 CPU supports several
power-saving features, including frequency scaling, where the core clock
frequency can be configured by software. Lowering clock frequency reduces
the CPU's power consumption, but at the cost of reduced CPU speed. This CPU
also supports several modes of operation:

• Run mode: the normal state of operation for the SA1110 when it is
executing code. All power supplies are enabled, all clocks are running and
every on-chip resource is functional.

• Idle mode: allows software to stop the CPU when not in use. In this mode,
the CPU clock is stopped, representing some savings in power. All other
on-chip resources are active. When an interrupt occurs, the CPU is
reactivated.

• Sleep mode: offers the greatest power savings and consequently the
lowest level of available functionality. In this mode, power is switched off

to the majority of the processor. Some preprogrammed event, such as a
power button press, wakes up the CPU from this mode.

As you can see, software is responsible for transitioning the CPU either to idle
mode or sleep mode.

In such a PDA, DRAM cells normally are refreshed periodically by the memory
controller logic present inside the CPU. In sleep state, however, the majority of
the CPU is shut off, which results in DRAM cells not being refreshed, which in
turn leads to loss of data in DRAM. To avoid this loss, most DRAMs support a
mode called self-refresh wherein the DRAM itself takes care of refreshing its
cells. In such cases, software can put DRAM in its self-refresh mode by writing
to a few control registers before transitioning the CPU to its sleep mode,
thereby preserving the DRAM contents.

The top power-hungry devices in this PDA can be the CPU, DRAM and display
back light. Hence, they should be kept in their low power states as much as
possible.

Figure 1. Power State Transition Diagram

Figure 1 shows a possible power state transition diagram for this PDA. Here is a
brief description of the power states:

• Run state: system falls into this default state when it reboots. Power
consumption is maximum in this state, as all devices are turned on or
active.

• Standby state: system falls into this state due to inactivity. LCD and display
back light are turned off, and CPU clock speed is reduced to save some
power.

• Sleep state: system falls into this state due to continued inactivity. Power
is conserved aggressively by putting the CPU in sleep mode, which in turn
powers off most devices. DRAM, however, is put in its self-refresh mode to
preserve the machine state (system and application text/data loaded in
memory) while the system is sleeping. The system awakens from sleep
state when a preprogrammed event occurs. When it wakes up, it
transitions to the run state and machine state is restored.

• Shutdown state: system falls into this state when the shutdown command
is issued. The system reboots when it exits from this state. This means it is
not necessary to preserve the machine state in DRAM, and hence DRAM
can be powered off. The shutdown state then represents the lowest
power consumption state of all.

The real-time clock is kept on in all power states to retain system time.

It is clear from this diagram that detecting inactivity and putting the devices in
their low power states forms the heart of power management software.

 Linux and Power Management

Power management software manages state transitions in association with
device drivers and applications. It intimates all PM events, including standby
transition, sleep transition and low battery, when they occur. This allows
software to veto certain state transitions when it is not safe to do so.

Device drivers generally are responsible for saving device states before putting
them into their low power states and also for restoring the device state when
the system becomes active.

Generally, applications are not involved in power management state
transitions. A few specialized applications, which deal directly with some

devices, may want to participate. This section explains what device drivers need
to do in order to participate in power management:

• pm_dev structure: the PM subsystem in the Linux kernel maintains some
information in a pm_dev structure about every registered driver.
Maintaining this information allows it to notify all registered drivers about
PM events.

• pm_register: device drivers first have to register themselves with the PM
subsystem before participating in power management. They do this by
calling pm_register:

struct pm_dev *pm_register(pm_dev_t type, unsigned
long id, pm_callback cbackfn);

where type is the type of device being managed by the driver, id is the
device ID and cbackfn is a pointer to some function in device driver. This
is called as the driver's callback function.

The linux/pm.h file defines the various types and IDs that can be used by
drivers. If successful, pm_register returns a pointer to a structure of type
pm_dev. A driver's callback function is invoked by the PM subsystem whenever
there is a PM event. The following arguments are passed to the function:

• dev: a pointer to the pm_dev structure that represents the device; the
same pointer returned by pm_register.

• event: identifies the PM event type. The possible events are PM_STANDBY,
meaning the system is going into standby state; PM_SUSPEND, meaning
the system is going into suspend state; and PM_RESUME, meaning the
system is resuming (from either standby or sleep states). Based on
implementation, more events can be supplied.

• data: data, if any, associated with the request.

Each device driver is supposed to do some processing according to the PM
event type. In a PM_SUSPEND event, for example, the LCD driver is supposed to
save the device state and then switch off the LCD. If it is a PM_RESUME event,
the LCD driver should switch on the LCD and restore its state from the saved
state.

The callback function should return an integer value. Returning a value of zero
signifies that the driver agrees to the PM event. A nonzero value signifies that
the driver does not agree to the PM event. This may cause the state transition
in progress to be aborted. For example, if a PM_SUSPEND event is sent to the
LCD driver's PM callback function and it returns 1, the suspend operation is
aborted.

All the driver's callback functions are invoked in a predefined order. This is on a
last-come-first-served basis, which can be a problem if two devices depend on
each other. Let's say the interface to a Bluetooth (BT) device is through a USB
host controller (HC). The Bluetooth driver needs this interface to be up before it
can talk to the BT device. Because of this dependency, the USB HC driver is
loaded before the BT driver. This means the USB HC driver registers with PM
before the BT driver.

Whenever a system wants to transition to sleep state, a PM_SUSPEND request
is sent first to the BT driver and then to the USB driver. The USB HC driver may
shut off the BT port as part of its PM_SUSPEND processing. When the system
resumes, PM_RESUME is sent first to the BT driver and then to the USB HC
driver. At the time when the BT driver processes this request, its interface to
the BT device is not available, and hence it may have problems in resuming the
BT device. One way of tackling this situation is to change the PM_RESUME order
in the kernel to be on a first-come-first-served basis.

A driver stops participating in power management by calling pm_unregister:

pm_unregister(pm_callback cbackfn);

To unregister, it has to supply the pointer to the same function it used while
registering. Once a driver has unregistered itself, the PM subsystem stops
involving it in further PM events.

Linux also defines two interfaces, pm_access and pm_dev_idle, for drivers;
pm_access should be called before accessing hardware, and pm_dev_idle has
to be called when the device is not being used. These interfaces cannot be
implemented on all platforms, though.

Now we illustrate how a typical state transition takes place when only device
drivers are involved. The PM subsystem maintains all drivers that have
registered with it in a doubly linked circular list. Figure 2 shows how this list
looks when three drivers, A, B and C, have registered with it. This assumes that
driver C registers first, then B and finally A.

Figure 2. System in Run State

Now, let's say the system has to transition to standby state from run state. PM
subsystem sends out a PM_STANDBY request to all three drivers, for which
there are two possible outcomes. One, all drivers accept the request, and the
system is put in standby state. Two, some driver rejects it. In this case, the
standby transition is aborted, and the system continues to be in run state.

Figure 3. System in Standby State

Figure 3 shows what happens when all the drivers have accepted the
PM_STANDBY request. Notice how the state field in pm_dev structure is
changed when a driver accepts the request.

Let's now consider the case where drivers A and B accept the PM_STANDBY
request, but driver C rejects it. Figure 4 shows the case after driver A has
accepted the request. After driver A has agreed, the PM_STANDBY request is
sent to driver B.

Figure 4. Driver A has accepted the PM_STANDBY request.

Figure 5 shows the state of the drivers after driver B also has accepted. Now
both devices A and B are put in their standby state, while device C is still in its
run state.

Figure 5. Driver A and driver C have accepted a PM_STANDBY request.

Next, PM_STANDBY is sent to driver C, which rejects it. In this case, the standby
transition has to be aborted. Because devices A and B already have been put in
their standby states, the PM subsystem has to perform an undo operation on
them, so it sends a PM_RESUME request first to driver B and then to driver A.
After this undo operation is done, all devices are put back in their run states, as
shown in Figure 6.

Figure 6. The system is back in run state after driver C rejected the PM_STANDBY request.

 APM

Figure 7 shows the APM model. The important components of this model are:

• APM BIOS: software interface to the motherboard and its power managed
devices and components. It is the lowest level of PM software in the
system.

• APM driver: implements APM in a particular operating system.
• APM-aware device drivers and applications: APM driver interacts with

them for all PM events.

https://secure2.linuxjournal.com/ljarchive/LJ/119/6699f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/6699f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/6699f7.large.jpg

Figure 7. APM Model

APM BIOS detects and reports various PM events, including low battery, power
status change, system standby, system resume and so on. The APM driver uses
polling function calls to the APM BIOS to gather information about PM events. It
then processes these events in association with APM-aware drivers and
applications.

The APM driver in Linux exposes two interfaces for an application's use. The
first, /proc/apm, holds information on the system power. It specifies whether
the system is running on A/C power or battery. If running on battery, it also
specifies the battery charge and time left for the battery to drain completely.
The second interface, /dev/apm-bios, allows applications to know of and
participate in PM events. It also allows them to initiate power state transitions
by themselves, by issuing suitable ioctl calls. Read calls issued against this file
will block until the next PM event occurs. When the read call returns, it carries
information regarding the PM event about to occur.

Some of the applications that have opened /dev/apm_bios may be running with
root privileges. Such applications are special to the APM driver. For some of the
events, such as standby or suspend transition, APM driver informs all
applications that have opened /dev/apm_bios about the event. In addition, it
waits for approval from those few applications running with root privileges
before the system actually is put in standby/suspend state. This approval
comes when applications issue suitable ioctls.

The following ioctls normally are supported:

• APM_IOC_STANDBY: puts the system in standby state.
• APM_IOC_SUSPEND: puts the system in suspend state.

APM also comes with two user-space utilities. The apm command interacts with
the APM subsystem in the kernel. Depending on the arguments passed, it can
display system power status, or it can be used to initiate system standby/
suspend transition. The apmd dæmon reports and processes various PM
events and logs all PM events to /var/log/messages. In addition to logging,
apmd also can take some specific actions for each type of PM event. These
actions are specified in a script file (usually called apmd_proxy). This script file is
invoked by the apmd dæmon with one or two arguments indicating the PM
event about to occur. The following is a sample script file:

case 1:2 in

"standby":*)
 #System is going to Standby state because of
 #inactivity. Reduce CPU speed.
 echo 162200 > /proc/sys/cpu/0/speed

 ;;

"resume":"standby")
 #System is resuming to Run state from Standby
 #because of activity. Increase back the CPU
 #speed.
 echo 206400 > /proc/sys/cpu/0/speed
 ;;

"suspend":*)
 #System going to suspend state. Bring down
 #network interface.
 ifconfig eth0 down
 ;;

"resume":"suspend")
 #System resuming from suspend state.
 #bring up network interface and
 #increase the CPU speed and
 ifconfig eth0 up
 echo 206400 > /proc/sys/cpu/0/speed
 ;;

 Example Power State Transition

Some of the complexities involved in power state transitions can be understood
by taking the example of a state transition involving both drivers and
applications. Assume the system has two drivers, D1 and D2, registered with
PM and three applications, A, B and C, also participating in PM (by way of
opening /dev/apm_bios). Of the three applications, A and B are running with
superuser privileges, and C is not. Figure 8 depicts this scenario.

Figure 8. Example Power State Transition

Now, with this setup, let's consider a case where the system wants to transition
to sleep state from run state. The sequence of steps involved in this case begins
with informing applications A, B and C about the pending transition to sleep
state. This allows them to take whatever actions are necessary for this
transition. Also, because A and B have superuser privileges, we have to wait for
them to say okay to this sleep transition before it proceeds any further.

When A and B are done with whatever work they need to perform before the
system transitions to a sleep state, they give the go-ahead to the APM driver.
Now, the APM driver is ready to put the system into sleep state. It sends a
PM_SUSPEND message to D1 and D2. D1 and D2 put their respective devices
into sleep state and say okay to APM. After D1 and D2 are finished processing
this transition, APM informs the CPU PM driver to put the CPU in sleep state. At
this stage, the system transition to sleep state is complete.

 Conclusion

Although APM has some drawbacks, its simplicity allows it to be implemented
in almost any device. Other standards, such as ACPI, provide richer control over
power management at the cost of complexity. It also is essential that all device
drivers and applications implement power management support correctly.
Without this proper support, a single driver may prevent the system from, say,
going into suspend state. Once implemented properly, power management
software greatly benefits the system in terms of enhanced battery life, leading
to greater efficiency.

Resources

APM Specification

Documentation/pm.txt in Kernel Sources

Intel SA1110 Advanced Developers Manual

Srivatsa Vaddagiri (vsrivatsa@in.ibm.com) has been with IBM India since 1996.
He has worked on a number of projects focusing mainly on UNIX systems.
Currently, he is with the embedded Linux group working on power
management support for a Linux-based handheld.

Anand K. Santhanam (asanthan@in.ibm.com) has been working for IBM Global
Services (Software Labs), India, since July 1999. He is a member of the Linux
Group at IBM, where he concentrates primarily on device drivers, ARM-Linux
and power management in embedded systems.

mailto:vsrivatsa@in.ibm.com
mailto:asanthan@in.ibm.com

Vijay Sukthankar (vksuktha@in.ibm.com) has been with IBM since 1994.
Currently he is managing the Linux Competency Center, and he also is
managing teams working on open-source development on Linux at IBM. He
also is involved in various groups within IBM to provide services on embedded
Linux.

Murali Iyer (mniyer@us.ibm.com) has been with IBM since 1995 and has
worked in various IBM labs around the world. Since 2000 he has been involved
with designing embedded systems using Linux. Some of the projects being
executed include high-end handheld devices and a programmer for
pacemakers.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:vksuktha@in.ibm.com
mailto:mniyer@us.ibm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Bricolage Templates

Reuven M. Lerner

Issue #119, March 2004

Using a content management system doesn't mean the pages on your Web site
all have to look alike. Create a custom template for each section.

Over the past few months we have looked at Bricolage, an open-source content
management system (CMS) based on PostgreSQL, mod_perl and Apache.
Bricolage has gained a good deal of mind share in the last few years, partly
because of its open-source license, partly because of the open-source
technologies on which it is based and partly because its feature set is
comparable to many proprietary CMS packages, to say nothing of the open-
source CMS offerings.

This month, we conclude our tour of Bricolage with a look at its use of
templates. To date, we have looked at a number of the administrative and
editing capabilities that Bricolage brings to the table, but a CMS is useful only if
you can customize its output and make the resulting Web sites appealing.

 Template Theory

HTML templates have existed for quite a long time, and they are a nice
compromise between static pages and putting HTML inside of a program,
which makes it inaccessible to a designer. If you want an HTML page to change
dynamically, using templates is a good way to go.

Of course, this raises the important question: which templates should you use?
Hundreds of different templating systems exist, including several dozen written
in Perl. Some of these, such as Text::Template, are not HTML templating
systems per se, but they have been used with great success on a variety of
Web-related tasks.

Which templating system you should use is a debate rivaled only by Linux/BSD
and Emacs/vi discussions. Luckily, Bricolage rises above the debate, coexisting

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

happily with both HTML::Mason and the Template Toolkit. It theoretically is
possible to use another templating system, but these two are popular and
powerful enough that they appear to satisfy many Bricolage users. I personally
prefer HTML::Mason and demonstrate Bricolage templating with Mason, but if
you are a Template Toolkit fan, feel free to use it instead.

A template is a generic outline for the content of a page of HTML. Everything is
considered to be static, except for variables, whose values are filled in
(interpolated, in the language of programmers) at runtime. For example,
consider the following template:

<html>
 <head>
 <title><% $title %></title>
 </head>

 <body>
 <h1><% $headline %></h1>
 <p><% $body_text %></p>
 </body>
</html>

The above template, written using Mason syntax, always has a title, headline
and paragraph. The contents of the title, headline and body text, however, are
variable.

Mason also provides two global variables: $r, the standard mod_perl object that
gives us access to the internals of our Apache server through its Perl API, and
$m, the object that provides additional information about the overall Mason
environment and the current, specific Mason template.

Bricolage introduces three new objects into this mix. The most important is
$story, which contains information about the current story. Stories contain
elements, which can themselves contain additional elements; the current
element is available using the object $element. Finally, Bricolage sends pages to
an output channel (normally, but not necessarily, to a Web site) using a
mechanism known as a burner.

Before we continue, it's also important to understand Mason's autohandlers,
which make it possible to give a site a unified look and feel. If an autohandler
exists for a particular directory, then the autohandler always is going to be
invoked instead of a file in that directory. That is, if you request /abc/def.html
and /abc/autohandler already exists, /abc/autohandler is invoked instead of /
abc/def.html. This might sound strange at first, and it is—except that the
autohandler can invoke the originally requested template at any point by
invoking $m->call_next().

A common strategy is to put as much common material as possible inside of
the autohandler, including menus, images and headlines. The autohandler is a
Mason template like any other, except for the way in which it is invoked. Inside
the autohandler, between the various headlines, images and menus, you insert
a call to $m->call_next(), which inserts the requested page. You thus get the
benefits of a modular design using multiple templates, while simultaneously
having the ability to redesign the site by changing a single file.

Autohandlers nest, meaning that Mason invokes all of the autohandlers it can
find in all of its parent directories. So if we request /abc/def.html, Mason first
looks for and invokes /autohandler, followed by /abc/autohandler, followed by /
abc/def.html. This allows you to create a section-specific look and feel, as well
as section-based menus and other information.

 Modifying Templates

I'm going to assume you already have created and published at least one story
on your system. If you're not sure how to create and publish a story, see my
previous articles on Bricolage from the last few issues. Once you have
published a story, it is sent to a particular output channel, either by copying a
file on the filesystem or by using FTP to move it to a remote server.

The look and feel of your story is determined by the template. So, before we
create our own simple templates, let's look at the basic examples that come
with the system. Go to the Find Template link in the Template menu on the left
side of the Bricolage administrator screen (user name is administrator,
password is change me now!), and click on the Search button without entering
anything into the text field. You should see a list of templates, one for each
element type in the system (Figure 1).

https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f1.large.jpg

Figure 1. Select the template you want to edit from the Find Templates page.

In many ways, Bricolage templates are like stories: they are created, edited and
deployed at different desks; access to them is limited to certain users and
groups; and Bricolage keeps track of changes (and avoids clashes) with a simple
version-control system. Indeed, if you look at Figure 1, you can see that each
template has a version number associated with it. Each can be checked out of
the version-control system by clicking on the associated check box and then the
Checkout button at the bottom of the page. Checked-out templates are
available from the Active Templates link under the Templates menu.

In Bricolage, a story is only one type of publishable element. Further, each
element may contain any number of additional elements. Bricolage comes with
several predefined top-level elements, such as story, book review and column,
plus several additional elements designed to be included in other elements,
such as a pull quote.

If you think about a daily newspaper, you should realize that each section is
styled differently, even for similar elements. For example, columns in the Metro
section of the New York Times look different from columns in the Business
section, which look different from the Op-ed page. That said, they are all
columns. Bricolage resolves this problem by allowing you to assign a category
to an element. So if you are writing a column for the Sports section, you
indicate that it is part of the sports category. When Bricolage publishes the
column to the Web, it looks for the /sports/column.mc template. If it exists,
Bricolage applies that specific template. If not, Bricolage looks for a column.mc
template at the top (root) category. In other words, if you have a top-level

https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f1.large.jpg

template for an element, it serves as a fallback, or default, for all the elements
of that type on the system. You can give some or all sections of your site a
different look and feel by defining category-specific templates.

As you can see from Figure 2, I have checked out the /story.mc template, which
is the top-level template for stories. Rather than having a view link, I have an
edit link that allows me to modify the template. I also can edit the template by
going to the active templates page, which provides me with a similar edit link.
Open up the template for editing, which should give you a screen similar to
Figure 2.

Figure 2. Editing a Checked-Out Template

Editing a template is similar to editing a story or any other element type, except
that you are modifying the container into which the story will be inserted. If you
insert only static HTML, every element looks identical. Thus, the trick is to use
the predefined $story, $element and $burner objects to fill in the page with
dynamic content. For example, here is the default /story.mc template:

<!-- Start "Story" -->

%# Only show this if we are on the first page
% unless ($burner->get_page) {
<h1><% $story->get_title %></h1>
<% $element->get_data('deck') %>
<hr />
% }

%# Display all the pages of this story
% $burner->display_pages('page');

Page <% $burner->get_page + 1 %>

https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f2.large.jpg

<!-- End "Story" -->

As you can see, the above template is rather simple. An actual site might insert
a drop-cap, set some styles in CSS or include some additional static text to
identify the site. The basic version of /story.mc does the following:

• It gets the current page number from $burner->get_page(). The page
numbering begins at 0; however, we display the story's title and the
element's deck if we are on the first page. The title comes from the $story
object, with $story->get_title(), and the deck (an abstract) comes from the
element itself. Notice how $element->get_data() is a fairly generic-looking
method; we can use $element->it to retrieve any field from within an
element.

• We display the story by requesting it from the burner, using $burner-
>display_pages('page').

• Finally, we use $burner->get_page() once again to show the page number
at the bottom of the page.

What happens if we remove the page number and insert some static HTML of
our own at the top or bottom of this template? Our changes then are reflected
for all stories on the system. But it's important to remember that not all
elements are stories, so changes that we make to /story.mc do not affect
columns, book reviews or other element types.

When you are done editing /story.mc, you can click on the Check-In button at
the bottom of the page. When you check a template in, you can send it to the
development template desk (the default) or you can deploy it right away. This
option is particularly useful if you discover a mistake on a template that is
affecting the entire site; you can modify the template, deploy it and see the
results immediately.

Finally, notice how /story.mc does not contain any <html> or <title> tags. That's
because such items are implemented within the autohandler. The /autohandler
template, which you can view, check out and edit from the Templates menu, is
defined by default to be the following:

<!-- Start "autohandler" -->
<html>
 <head>
 <title><% $story->get_title %></title>
 </head>
 <body>

 % $burner->chain_next;
 </body>
</html>
<!-- End "autohandler" -->

The autohandler, which is global to the entire site, places the title of a story
within the appropriate HTML <title> tags. It also incorporates the appropriate
page contents into the template by invoking $burner->chain_next().

If you want to include a global CSS stylesheet, add a standard menu to the top
of each page or put your company's logo at the top of each page on the site,
this autohandler is the place to do it. And because autohandlers nest, you can
have a global autohandler for your overall site, with section-specific
autohandlers in each category.

 Creating Templates

So far, we have looked only at existing templates. It's quite easy to create a new
template, though. Simply go to the Template menu and click on New Template.
You should see a screen that looks like the one shown in Figure 3, asking you to
indicate the output channel and category to which your template should apply.
Click on Next, and you are asked for the element type to which your template
should apply.

Figure 3. Selecting the Output Channel and Category for a New Template

The category-channel-element combination must be unique. You therefore can
have multiple templates for an output channel, for a category or for a particular
element. But for story elements in the Web output channel in the root (/)
category, there can be only one template. If you try to violate this uniqueness
constraint, Bricolage issues a warning, telling you that there already is a
template for that combination. There are several solutions to this problem; one
is to create a new element type, another is to create a new category and still

https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7248f3.large.jpg

another is to modify the existing template for that combination. The best
course of action depends on your specific goals.

I'm going to create a new template for columns within the tofu category, which
is represented as /tofu/column.mc in Bricolage. Once I click the Create button,
I'm presented with an editing screen that allows me to create or modify my
template. I'm going to make my template extremely simple:

<!-- Start "tofu/column" -->

%# Display this story
% $burner->display_pages('page');

<!-- End "tofu/column" -->

Notice how we put HTML comments around the definition. This makes it easier
to debug the template when it is turned into HTML and sent to the user's
browser. I can assure you from personal experience that the nested nature of
Mason templates, especially with multiple autohandlers, can be maddening.

Once I select and deploy from the Check-In menu, and then click the Check-In
button, my template is deployed. Any column with a category of tofu now is
formatted with this template rather than the global, more general one for
columns.

And, of course, if I want to go back and edit my template, I can do that in the
way that we saw earlier—finding it, checking it out and editing it.

 Conclusion

Bricolage, like any serious CMS, makes it easy to create a unified look and feel
by using templates. Because Bricolage is based on standard open-source tools,
such as mod_perl and Apache, it can take advantage of the existing templating
systems for mod_perl, including HTML::Mason and the Template Toolkit. This
month, we saw how we can create and modify templates associated with
various element types and categories, giving us the flexibility we need to
generalize a site's look and feel without being constrained.

Resources

The main source of information about Bricolage is the project's Web site,
bricolage.cc. This site has pointers to downloadable source code (hosted at
SourceForge), documentation and an instance of Bugzilla (bugzilla.bricolage.cc)
for bug reports and feature requests.

http://bricolage.cc
http://bugzilla.bricolage.cc

SourceForge hosts several Bricolage mailing lists, in which the developers
participate actively. If you have questions or want to learn about new releases,
you can subscribe from the SourceForge page, sourceforge.net/projects/
bricolage.

The Bricolage documentation generally is quite good, if technical. A more user-
level introduction to the system was published by O'Reilly and Associates as an
appendix to their recently published book about Mason. You can read that
appendix on-line at www.masonbook.com/book/appendix-d.mhtml.

You can learn more about Mason from both the Mason book site,
www.masonbook.com, and the Mason home page, www.masonhq.com.

Finally, you can learn more about David Wheeler (the primary author and
maintainer of Bricolage) at david.wheeler.net, and about his company,
Kineticode, at www.kineticode.com.

Reuven M. Lerner, a longtime consultant in Web/database programming, is
now a graduate student in Learning Sciences at Northwestern University in
Evanston, Illinois. You can reach him at reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://sourceforge.net/projects/bricolage
http://sourceforge.net/projects/bricolage
http://www.masonbook.com/book/appendix-d.mhtml
http://www.masonbook.com
http://www.masonhq.com
http://david.wheeler.net
http://www.kineticode.com
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Kernel Korner

What's New in the 2.6 Scheduler?

Rick Lindsley

Issue #119, March 2004

When large SMP systems started spending more time scheduling processes
than running them, it was time for a change. The new Linux scheduler works
well on systems with many processors.

As work began on the 2.5 Linux kernel tree back in December 2001, there was a
lot of talk in the community about scaling. Linux had begun to appear in some
of the roles traditionally filled by larger servers, and several vendors were
offering versions of Linux suitable for symmetric multi-processing (SMP).
Although commercial interest in that area seemed to be growing, there also
was a growing realization that even SMP Linux wasn't scaling as well as it
should. If, say, two single-processor desktop machines could outperform a
single four-processor machine, who'd want to use (or buy) the four-way?

One of the first areas of the kernel that required attention was the scheduler. It
became apparent that as the load and the number of CPUs increased, the
scheduler worked harder and harder and ended up taking more and more time
away from the processes it was scheduling. In the worst case, nearly the entire
system was consumed trying to decide what to run next.

When we speak of the Linux scheduler, we're not referring to a specific task
that handles all the scheduling. Rather, each task itself does a little bit of the
scheduling each time it acquires or yields the processor, by calling a scheduler
function within the kernel. So when we speak about the scheduler doing this or
that, we really mean the scheduler function and its related routines in the
context of some other task.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 The 2.4 Scheduler

The original 2.4 scheduler was quite simple. All tasks on the system were
already on a global list called tasklist, and these were assigned a goodness
rating. Goodness was determined by:

• How many clock ticks you might have left: when a task is given the
processor, the task is allocated a certain amount of time to use it before
that task is interrupted involuntarily and replaced by another task. If it
gives up the processor voluntarily—to wait for I/O, for example—then the
task's generosity would be rewarded by being at a higher priority to regain
the processor once the I/O job was complete.

• CPU affinity: by using another system call, it is possible to advise the
scheduler that you wish to remain on a particular processor, even if
another processor should free up first.

• Nice or user-set priority: if the user is root, it's possible for the user to
increase or decrease the priority of a task within a fairly substantial range.

• Whether the task was a real-time task: a task that has been designated a
real-time task has a higher priority than all tasks that are not real time.

So when a processor came free, the 2.4 scheduler would examine the tasklist,
looking for the task with the highest goodness, and select that task for running
next. Figure 1 demonstrates how the 2.4 scheduler worked. The tasklist was the
runqueue, and because it wasn't ordered in any helpful way, each iteration of
the scheduler would examine the tasklist completely, looking for the best
candidate for the idle processor. In the case of multiple processors, it was a
matter of chance if you ended up on the same processor twice in a row, even if
you were the only runnable task.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7178f1.large.jpg

Figure 1. The 2.4 scheduler was shared among processors and wasn't ordered in any helpful
way.

This model had the advantage of being quite simple to implement and fairly
simple to debug. The tasklist was guarded by a single read/write spinlock. This
allowed multiple tasks to examine it in parallel while still providing the
mechanism for obtaining exclusive access for the comparatively rare event of
changing it.

Unfortunately, these same features also were the model's disadvantages.
Instrumentation of the then-current 2.4 scheduler began to zero-in on the
problem: the single read/write spinlock tended to become a point of contention
on both busy systems and systems with four or more CPUs. Only a single
queue was used for all processors, and it had to be examined completely for
each reschedule. As the system got busier, the tasklist got longer; the linear
search for the best task took longer as well. As a result, having decided which
process to run, you waited longer to acquire the lock exclusively to remove that
task from the runnable list and mark it running. If the wait was long enough,
several processors might choose the same process only to learn that it already
had been given to a different processor. The other processors then would have
to go back to the linear search and find another task. As the system got busier,
the scheduler consumed more CPU time, to the point where scheduling
processes took more time than did running them. Changes needed to be made
so that a loaded system didn't schedule itself into a standstill.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7178f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7178f1.large.jpg

 The 2.6 Scheduler

Thus, the stage was set for the introduction of the O(1) scheduler in 2.6, which
boasts that the time to select the best task and get it on a processor is constant,
regardless of the load on the system or the number of CPUs for which it is
scheduling. Instead of one queue for the whole system, one active queue is
created for each of the 140 possible priorities for each CPU. As tasks gain or
lose priority, they are dropped into the appropriate queue on the processor on
which they'd last run. It is now a trivial matter to find the highest priority task
for a particular processor. A bitmap indicates which queues are not empty, and
the individual queues are FIFO lists. Therefore, you can execute an efficient
find-first-bit instruction over a set of 32-bit bitmaps and then take the first task
off the indicated queue every time.

As tasks complete their timeslices, they go into a set of 140 parallel queues per
processor, named the expired queues. When the active queue is empty, a
simple pointer assignment can cause the expired queue to become the active
queue again, making turnaround quite efficient.

It's not possible to draw the 140 queues now present for each CPU without
resorting to mere dots. But, Figure 2 offers an approximation and drives home
the major difference between the 2.4 and the 2.6 schedulers. Except on a
heavily loaded system, most queues are empty. Those that are not empty have
their best selection at the head of the queue, so searching for the next task to
run has become easy.

Figure 2. The 2.6 scheduler has 140 queues per processor, making it easy to search for the
next runnable task.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7178f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7178f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7178f2.large.jpg

There's one shortcoming of this 2.6 method. Once a task lands on a processor,
it might use up its timeslice and get put back on a prioritized queue for
rerunning—but how might it ever end up on another processor? In fact, if all
the tasks on one processor exit, might not one processor stand idle while
another round-robins three, ten or several dozen other tasks? To address this
basic issue, the 2.6 scheduler must, on occasion, see if cross-CPU balancing is
needed. It also is a requirement now because, as mentioned previously, it's
possible for one CPU to be busy while another sits idle. Waiting to balance
queues until tasks are about to complete their timeslices tends to leave CPUs
idle too long. Instead, 2.5 and 2.6 leverage the process accounting, which is
driven from clock ticks, to inspect the queues regularly. Every 200ms a
processor checks to see if any other processor is out of balance and needs to
be balanced with that processor. If the processor is idle, it checks every 1ms so
as to get started on a real task as soon as possible.

This is not to say that the scheduler is fixed now and all work on it has stopped.
Some workloads and architectures provide some interesting scenarios that the
scheduler still doesn't deal with well.

 Current and Future Work

The goals of a successful scheduler can be stated simply, even if they always
can't be attained simply.

1. Minimize the time spent scheduling, so as to maximize the time spent
executing.

2. On multiple CPUs, keep the load spread around so it is easier to share the
processors fairly.

3. Provide good response to interactive programs.

In addition, the philosophy of the Linux scheduler is that it should be mostly
right all of the time rather than perfect much of the time. Even though different
workloads exhibit different behaviors and place different stresses on the
system, the scheduler should be sufficiently general and robust so that all
workloads are handled at least adequately, without additional tuning being
necessary.

 Interactivity

Most of the scheduler tweaking in 2.6 has been done in an attempt to improve
interactive response. Originally, this was interactive in the traditional sense of
dragging windows across a monitor or typing on a keyboard. An interactive task
was meant to define a task that utilized a lot of human interaction. But it
gradually has been expanded to mean “tasks that should receive high priority
upon waking up from self-imposed sleeps”. This includes the previous set of

tasks but also now includes tasks for which a delay is noticeable by humans,
such as delays in music players. Because this is a subjective evaluation, it might
never be resolved to everyone's satisfaction. General agreement from testers,
however, is the situation is better now with the 2.6 scheduler.

 Process Affinity

Imagine two tasks spending a lot of time communicating with each other over a
pipe or bit of shared memory. Some evidence exists that they might do better if
they were on the same processor, even if that means leaving another idle. If
one sends a message to the other and then waits for a reply, both tend to
alternate being runnable with small overlaps where they are both runnable. In
other words, they don't collide often. The big savings comes from having the
processor cache pre-warmed with the data in the pipe so it doesn't need to be
fetched and copied again to a different processor's cache. Although processor
speeds have been increased, memory and bus speeds have not kept pace. It's
becoming increasingly painful to have to retrieve data that used to be cached.

 Process Size

Moving a task that uses little memory affects a processor differently from
moving a task that uses a great deal of memory. However, either the large or
small task may be the correct choice depending on the circumstances. If you
move a task that uses a lot of memory away from a processor, leaving behind
many small tasks that don't use much memory, each of those tasks may find a
higher percentage of their memory in cache each time they run. On the other
hand, moving that large task to another processor that has large tasks may now
cause all the tasks to start with a cold cache and negatively affect the
performance of both it and its new neighbors. Current code does not take
process size into account at all.

 Device Affinity

For much the same reason as process affinity, there might be times when it
pays to overload a processor with tasks if those tasks are making heavy use of a
particular device. Web servers, for instance, often have multiple network cards
but not enough to have one for each CPU. Congregating those tasks on
processors where the network data is arriving might prove quite advantageous.
Determining which tasks are likely to use which devices is currently neither
obvious nor easy.

 Heavy Spikes but Short-Lived Tasks

Shell scripts can cause an explosive number of short-lived tasks, especially if
they don't or can't use built-in functions for string or number manipulations.

Although one could argue these are poorly coded scripts, they nevertheless
have demonstrated that the scheduler can be too slow in balancing queues on
SMP machines. Workloads with similar behavior also would suffer.

 Light but Unbalanced Load

Imagine a program that divides the work into six equal pieces, all of which
ideally finish at the same time. Unfortunately, on a four-processor machine,
two processors tend to take two tasks and two tend to take one task, and
things stay that way. Unless the scheduler makes an effort to spread the pain
around, two jobs finish more quickly than the other four because they have no
competition on their processor. On the other hand, in most job mixes, moving
those odd jobs around still leaves two tasks on each of two processors.

 NUMA

NUMA (non-uniform memory access) presents some interesting characteristics
to worry about. In a NUMA system, it may be much more expensive to get
memory from over there, near another processor, than from here, near this
processor. It's not sufficient to have an idle processor; you need one that is
both idle and not too expensive to migrate to. For instance, it might be bad to
migrate a task if most of the task's resources reside at the current location. It
even might be so bad that it's better to leave it on a busy processor than to
move it to an idle one with a cold cache.

 Hyperthreading

Hyperthreading introduces yet another complexity. In hyperthreading, two
processors share cores that overlap in a hardware-dependent way. Because of
this interdependency, jobs running on one processor can affect the speed of a
job running on the other processor. Although nobody would ever expect a box
with four hyperthreading processors to equal a full eight-processor machine,
exactly what to expect varies a great deal by workload. The only sure thing is it
should not yield less performance.

 Summary

The 2.6 scheduler offers some strong improvements over the 2.4 scheduler. It
scales better on larger machines for most workloads without giving up the
performance demanded by the one- and two-processor users that make up
much of the Linux market. Recent changes allow the scheduler to handle kernel
builds smoothly at the same time as it plays your favorite songs. The 2.6 kernel
is available now to adventurous souls at www.kernel.org. Full distributions from
Linux vendors that utilize 2.6 kernels will lag as vendors complete their own

http://www.kernel.org

testing and add their own support features; you should contact your favorite
vendor directly for release information.

Rick Lindsley has worked with UNIX and Linux for 20 years. He's currently
working on Linux scheduler improvements in IBM's Linux Technology Center
and can be reached at ricklind@us.ibm.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:ricklind@us.ibm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

Can't Get Enough Desktops!

Marcel Gagné

Issue #119, March 2004

Explore new user interface ideas without leaving your regular desktop. Our chef
shows you how to nest X sessions.

Ah, François, I see you have decided to run Window Maker—excellent. It's a
great window manager, and I think you'll enjoy it. Two weeks ago, you were
running GNOME; last week it was KDE, and now it's Window Maker. I'm glad
you took my advice and decided to try other desktop window managers.
Choice, after all, is one of the great joys of running Linux.

Quoi? Which one am I running? All of those and a half-dozen more, mon ami.
François, I am not pulling your leg. My main desktop is KDE, but over here I
have GNOME and over there XFCE, and in that virtual desktop, I have Window
Maker. Furthermore, I have IceWM running in my Window Maker session. No,
mon ami, it is not complicated at all, and I will show you how it is done as soon
as our guests arrive. But they are already here! François! Vite! To the wine
cellar. Given that today's menu is more dessert than meal, fetch the 2001
Niagara Peninsula Riesling ice wine and bring it back tout de suite!

Welcome, mes amis, to Chez Marcel. Please sit and make yourselves
comfortable. I have been pushing my faithful waiter to experiment with
different desktops. It's always nice to try something different, which is why we
change the menu from time to time, non? The same is true for your desktop
environment. KDE or GNOME may be your favorite, but why not try Window
Maker, IceWM or XFCE for a change? A little visit to Matt Chapman's Window
Managers for X Web site at www.plig.org/xwinman should whet your
alternative window manager appetite. In fact, why not try them while you are
still running your favorite desktop? Non, mes amis, I have not been

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.plig.org/xwinman

oversampling the wine. It is possible to run multiple desktops simultaneously,
and it is a lot of fun once you get the hang of it.

As with many things in the Open Source world, there is certainly more than one
way to do it. The first involves jumping out of your current X session back to
one of your virtual terminals. If you already are running an X session, press Ctrl-
Alt-F1 and you should find yourself back at a text screen. Incidentally, F1 just as
easily could be F2, F3, F4, F5 or F6. If you started X from the command line (as
opposed to using a login manager like gdm or kdm), you should see the dialog
for the session when you press Ctrl-Alt-F1 with the log output from X on your
screen. Any of the other function keys, F2–F6, should provide you with a text-
based login screen. Simply press Ctrl-Alt-F2 for virtual terminal two and so on.

Your graphical session is still active. It runs by default on what the system calls
display :0, something you can verify by typing the command echo $DISPLAY
at a shell prompt (inside your graphical session, of course). You should see your
PC's hostname with the display suffix. Press Ctrl-Alt-F7 to go back to your KDE,
GNOME or whatever session. Go ahead and try it, and then head on back to a
text screen (Ctrl-Alt-F?). Your X session, then, is on virtual terminal seven. From
the text screen, log in as yourself and type the following:

xinit /usr/X11R6/bin/xterm -- :1

Notice the -- :1 at the end of this line. Because X already is running on
display :0, we need to run this X terminal on an alternate display, in this case, :1.
Now a new X session begins, this one running on virtual terminal eight. It looks
pretty boring because all you have is a simple X terminal running on a gray
background. There isn't much to look at or even any way to move the X
terminal window around, but you can execute commands and even start up
other X programs, which you also won't be able to move around. To go from
your new session to the old, press Ctrl-Alt-F7, then Ctrl-Alt-F8 to get back to
your X terminal. Easy, non? Using this technique, you could start something
more interesting, like another window manager, such as IceWM or XFCE, and
happily switch back and forth from one virtual X session to another.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f1.large.jpg

Figure 1. A Somewhat Dull and Bare X Display with a Single X Terminal

To get out of that X session, you should know about the classic X window
escape hatch, what I call the “oh, mon Dieu, I've tried everything and I can't get
out of X” escape clause. Simply press Ctrl-Alt-Backspace. This is, mes amis, a
rather rude way to exit X and should be used only when no other options are
available.

Switching from one X session to another is fine, but doing this makes it hard to
continue working on two desktops. To avoid constantly switching back and
forth, I have been running a program called Xnest. Xnest, part of the XFree86
distribution, is interesting because it is both an X client and server all in one. It
literally is a nested X server. Before I continue, I probably should let you know
that although it is part of X, it may not be installed already on your system;
however, the package (XFree86-Xnest) is likely on your distribution CDs.

In order to start a nested server, you have to provide an alternative DISPLAY
variable, as we did with the X terminal earlier. Because your own X server is
probably running as :0, choose :1. To make sure you can connect to this new
server from any of your applications, use the -ac option as well. This option
disables access controls. The ampersand starts my new server as a background
process:

Xnest :1 -ac &

https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f1.large.jpg

Now, a blank window starts on your desktop with the basic X cursor in the
center. On my Mandrake system, it was a dark-blue square. On another server
running Red Hat, it was black. It doesn't look like much, so let's start an X
application on our new server. We start with something simple like our
venerable Xclock:

xclock -display :1

When you press Enter, the classic Xclock appears in your second X server
window. This also is a great way to play with things like X resources. For
instance, let's dress up that rather boring clock and move it to another part of
the display:

xclock -foreground "Red" \
-geometry +450+250 -display :1

Figure 2. Populating Your Nested X Server

One by one, you could populate this new server with applications—the X logo
here and an Eterm there. Of course, moving windows around isn't possible in
this environment, thereby making this idea only so useful. To experience the
flavor of desktop mania truly, you need the whole smörgåsbord, meaning a
window manager and, of course, a little more wine to go with it.

Starting a full-blown window manager is a similar process, and for this next
step we start with the basic Tabbed Window Manager (TWM). This is the most
basic window manager you have and comes as part of XFree86. Begin by

https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f2.large.jpg

closing the applications in your Xnest so you can start clean. You should be
looking at that blank square with the X cursor in the center. Now, from the
command line, type:

twm -display :1

If nothing changes, press the left mouse button and TWM's menu should
appear. I did say it was a basic window manager, non? Let's try running Window
Maker this time:

wmaker -display :1

As you can see, the format essentially is the same, passing the -display
parameter to the window manager's command name in each case. This is, of
course, where I should tell you that not every window manager uses the same
switch. Here's a list of the more popular window managers and what you need
to start them:

• Motif Window Manager: mwm -display :1

• F Virtual Window Manager: fvwm2 -display :1

• GNOME (note double hyphen): gnome-session --display :1

• AfterStep: afterstep -d :1

In some cases, you won't be able to start a window manager using some kind of
display redirect switch. This is true with KDE, AmiWM, XFCE and some others.
To run these window managers, begin with a simple X terminal in your nested X
server:

xterm -display :1

From that command line, start your window manager or desktop simply by
typing its command name, such as xfce4-session for XFCE, amiwm for
AmiWM and so on.

After you've played with several window managers in this manner, you may
find yourself faced with a bit of a roadblock. Sometimes, in doing this, I ran into
a message (particularly from GNOME) that it could not start, specifically
gnome-session: you're already running a session manager.
As I knew this wasn't the case, I checked to see what the SESSION_MANAGER
pointed to:

$ echo $SESSION_MANAGER
local/ultraman:/tmp/.ICE-unix/3132

As you can see, I had leftover session information from a prior run with a
nested window manager. One option is to unset the SESSION_MANAGER
variable. Another is simply to remove the troubling files, assuming, of course,
that you are no longer running your window manager:

$ rm /tmp/.ICE-unix/3132
rm: remove socket `/tmp/.ICE-unix/3132'? y

It would appear, mes amis, that closing time is approaching rapidly, so it's time
for la pièce de résistance—your desktop dessert, if you will. Some of you may
be asking, “if I can run one nested server, why not two or three?” Starting a
second nested server is simply a matter of assigning a different display
number. For the second, type Xnest -ac :2 or Xnest -ac :3 for the
third and so on. In fact, you can run an Xnest inside of another Xnest. Figure 3
shows an IceWM session running inside a GNOME session, running inside a
KDE session.

Figure 3. IceWM Nested inside of GNOME, Nested inside of KDE

As you can see, mes amis, there is enough here to satisfy the greatest desktop
gourmand among you, non? As Robert Heinlein might have said, “to enjoy the
full flavor of life, take big bites” or in this case, run many different window
managers and many desktops.

And now, closing time truly is upon us, but spend a little more time exploring.
François will refill your glasses one final time before you go. Until next time,
mes amis, let us all drink to one another's health. A vôtre santé! Bon appétit!

https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7298f3.large.jpg

Resources

Window Managers for X: www.plig.org/xwinman

XFree86 Web Site: www.xfree86.org

Marcel's Web Site (check out the wine page): www.marcelgagne.com

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of the newly published Moving to Linux: Kiss the Blue Screen of Death
Goodbye! (ISBN 0-321-15998-5) from Addison Wesley. His first book is the
highly acclaimed Linux System Administration: A User's Guide (ISBN
0-201-71934-7). In real life, he is president of Salmar Consulting, Inc., a systems
integration and network consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.plig.org/xwinman
http://www.xfree86.org
http://www.marcelgagne.com
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Application Proxying with Zorp, Part I

Mick Bauer

Issue #119, March 2004

An application-level proxy blocks the widest possible range of network attacks
but is more complex than a packet filter. Is the trade-off worth it?

At first glance, stateful packet filtering appears to have conquered the firewall
world, both in terms of market share and mind share. The list of products
based on stateful packet filtering is a long one, and it includes both the
proprietary industry leader, Check Point Firewall-1, and Linux's excellent
Netfilter kernel code.

But what about application-layer proxies? Professional firewall engineers have
long insisted there's nothing like an application-aware proxy for blocking the
widest possible range of network attacks. Indeed, being such a person myself,
I've been disheartened to see application-layer proxies increasingly
marginalized. In some circles they've even been written off as obsolete for
reasons that simply don't warrant, in my opinion, the loss of a powerful security
tool. Marketing is at least as big a reason as any other.

Apparently I'm not alone in my opinion. Balazs Scheidler, creator of the
essential logging facility Syslog-NG, has created Zorp, an open-source proxy
firewall product that is simply brilliant. This month I explain why Zorp has
helped resuscitate my faith in the application-layer proxy firewall, and what this
means for anyone charged with protecting highly sensitive networks.

 Firewall Refresher Course

At this point, some of you may be asking, “What are application-layer proxying
and stateful inspection? And why do I care which is better?” I can explain. Feel
free to skip ahead to the next section if you're a grizzled firewall veteran.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A firewall, of course, is a computer or embedded hardware device that
separates different networks from one another and regulates what traffic may
pass between them. The instructions that determine which network nodes may
send what type of network packets and where are called firewall rules or,
collectively, the firewall policy.

These rules are what make a firewall different from an ordinary router. Routers
must be programmed to know how to move packets from one network to
another, but not necessarily whether to allow them to move in any given way. A
firewall, on the other hand, discriminates.

One very simple way to categorize packets is by the Internet information in
packets' Internet Protocol (IP) headers. An IP header contains basic information,
most importantly, protocol type, source and destination addresses, and, if
applicable, source and destination ports. The ports actually are part of the next
header down in the packet, the UDP header or TCP header. A firewall that looks
only at this basic information is called a simple packet filter. Because simple
packet filters don't look deeply into each packet, they tend to be quite fast.

However, the IP header of a packet plus its TCP or UDP port number tells us
nothing about that packet's relationship to other packets. For example, if we
examine the IP header of an HTTP packet, we know it's a TCP packet (thanks to
the IP field), where it's from and where it's going (source and destination IP
address fields) and what type of application sent it (from the destination port,
TCP 80). Table 1 shows an example simple packet-filtering rule.

Table 1. Simple Packet Filter Rules for HTTP

But that level of inspection leaves out some key pieces of information about the
HTTP connection: whether the packet is establishing a new HTTP session,
whether it's part of a session in progress or whether it's simply a random,
possibly hostile, packet not correlating to anything at all. This information is left
out because crucial session-related information such as TCP flags, TCP
sequence numbers and application-level commands, all are contained deeper
within the packet than a packet filter digs. That's where stateful packet filtering
comes in.

Source IP
Destination

IP
Protocol

Source

Port

Destination

Port
Action

Any 192.168.1.1 TCP Any 80 Allow

192.168.1.1 Any TCP 80 Any Allow

A stateful packet filter, like a simple packet filter, begins by examining each
packet's source and destination IP addresses, and source and destination ports.
But it also digs deeper into the packet's UDP or TCP header to determine
whether the packet is initiating a new connection. If it is, the firewall creates an
entry for the new connection in a state table. If it isn't, the stateful packet filter
checks the packet against the state table to see if it belongs to an existing
connection. A stateful packet filter will block packets that pretend to be part of
an existing connection, but aren't. Actually, UDP is connectionless, but a good
stateful firewall can guess that an outbound DNS query to a given server on
UDP 53 should be followed by an inbound response from that server's UDP
port 53. Stateful packet filtering has two main benefits over simple packet
filtering.

First, firewall rules can be simpler. Rather than needing to describe both
directions of each bi-directional transaction, such as HTTP, firewall rules need
address only the initiation of each allowed transaction. Subsequent packets
belonging to established, allowed connections can be handled by the firewall's
state table, independently of explicit rules. In Table 2 we see that only one rule
is needed to allow the same HTTP transaction for which we needed two rules in
Table 1.

Table 2. Stateful Packet Filter Rule for HTTP

The second main benefit of stateful packet filtering is we don't have to do such
distasteful things as allowing all inbound TCP and UDP packets from the
Internet to enter our internal network if they have a destination port higher
than 1024. This is the sort of thing you sometimes must do if you don't have a
better way to correlate packets with allowed transactions. In other words,
stateful packet filtering provides better security than simple packet filtering.

“Cool”, you say, “stateful packet filters are more efficient and secure”, which is
true. But what about the things even stateful packet filters don't consider?
What about things like potentially malformed HTTP commands or intentionally
overlapping IP fragments? Might there be a type of firewall that examines each
packet in its entirety or that has some other means of propagating the fewest
anomalous packets possible?

Indeed there is, and it's called an application-layer proxy or application-layer
gateway. Whereas packet filters, whether simple or stateful, examine all
packets and pass those that are allowed, an application-layer proxy breaks

Source

IP

Destination

IP
Protocol

Source

Port

Destination

Port
State Action

Any 192.168.1.1 TCP Any 80 New Allow

each attempted connection into two, inserting itself in the middle of each
transaction as an equal participant. To the client or initiator in each transaction,
the firewall acts as the server. To the intended destination, or server, the
firewall acts as the client.

Figures 1 and 2 illustrate this difference. In Figure 1, we see that the stateful
packet filter passes or blocks transactions but ultimately is an observer in that it
passes allowed packets more or less intact, unless, for example, it performs
network address translation (NAT). In contrast, in Figure 2 we see that the
firewall terminates each allowed connection to itself and initiates a new,
proxied connection to each allowed connection's desired actual endpoint.

Figure 1. With a stateful packet filter, packets flow directly from client to server, provided they
match either an allow rule or a state-table entry.

Figure 2. With an application-layer proxy, the connection is split in two. To the client, the
firewall appears to be the server (transaction #1). To the server, the firewall appears to be the
client (transaction #2).

Proxying comes in two flavors, transparent and nontransparent. In a
transparently proxied connection, both parties are unaware that the
connection is being proxied; the client system addresses its packets as though
there were no firewall, with their true destination IP address. By contrast, in a
nontransparently proxied connection the client must address its packets to the
firewall rather than to their true destinations. Because the client must, in that
case, somehow tell the firewall where to proxy the connection, nontransparent

https://secure2.linuxjournal.com/ljarchive/LJ/119/7296f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7296f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7296f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7296f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7296f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7296f2.large.jpg

proxying requires clients to run proxy-aware applications. Although most Web
browsers and FTP clients can be configured to use a nontransparent proxy,
transparent proxies are easier for end users to live with than are
nontransparent proxies. Modern application-layer proxies, such as Zorp, are
transparent.

Transparent or not, proxying has several important ramifications. First, low-
level anomalies, such as strange flags in the IP header, generally are not
propagated by the firewall. The firewall initiates the secondary connection in
the way that it, not the client system, considers an acceptable manner. Second,
because the firewall is re-creating the client connection in its entirety and not
merely propagating or trivially rewriting individual packets, the firewall is well
positioned to examine the connection at the application layer. This is not a
given, however; if the firewall is, say, a SOCKS firewall and not a true
application-layer proxy, it simply could copy the data payloads of the client
connection packets into those of the new, proxied packets. But if the firewall is
application-aware, like Zorp is, the firewall not only examines but makes
decisions about the data payloads of all client packets.

Let's look at an example: suppose your public Web server is vulnerable to a
buffer-overflow exploit that involves a malformed HTTP GET command
containing, say, an abnormally long URL. Your application-layer proxy firewall
initially accepts the connection from the client, but upon examining the long
URL, closes the connection with an error message to the client and a reset to
the server, without ever forwarding the attack payload, the long URL.

The third ramification isn't a positive one: by definition, proxying is more
resource-intensive than is packet filtering, and application-aware proxying is
especially so. This strike against application-layer proxies is, however, generally
overstated. Zorp, for example, can proxy 88Mbps worth of HTTP traffic, nearly
twice the capacity of a T-3 WAN connection, running on only a 700MHz Celeron
system with 128MB of RAM. Zorp, on a dual-processor Pentium system with
512MB of RAM and SCSI RAID hard drives, can handle around 480Mbps,
according to the Zorp Professional v2 Product Description, available at
www.balabit.com.

In summary, application-layer proxies provide superior protection by inserting
themselves in the middle of each network transaction they allow by re-creating
all packets from scratch and by making intelligent decisions on what
application-layer commands and data to propagate. They accomplish this
based on their knowledge about how those applications are supposed to work,
not merely on how their container packets ought to look. The main strike
against application-layer proxies is performance, but thanks primarily to

http://www.balabit.com

Moore's Law, this shortcoming is mitigated amply by fast but not necessarily
expensive hardware.

In the interest of full disclosure, I should mention one other shortcoming that
many people perceive in application-layer proxies, greater complexity. It stands
to reason that because application-layer proxies are more sophisticated than
packet filters, it should take more sophistication to configure them, in the same
way that you need to know more to operate a Mosler safe than to operate your
typical bus station locker. It's more work to configure a firewall running Zorp or
Secure Computing Sidewinder than it is to configure one running Check Point
Firewall-1 or Linux Netfilter/iptables.

But isn't better security worth a little extra work? Like everything else in
information security, it's up to you to choose your own trade-off. Maybe the
extra work is worth it to you, and maybe it isn't. Either way, I hope this column
makes you glad you've got the choice in the first place. The remainder of this
article, which continues with at least one more installment, explains precisely
what's involved in configuring and using Zorp.

 Getting and Installing Zorp

The proxy dæmons that comprise Zorp run on top of the Linux kernel
concurrently with the standard Netfilter and Balabit-provided TPROXY kernel
modules. In theory, this makes Zorp distribution-agnostic, and it's designed to
compile cleanly on any Linux distribution that meets certain requirements (see
below). Zorp is developed on Debian Linux, however, and the vast majority of
Zorp documentation assumes that you're running Debian too. In fact, Zorp GPL
is an official Debian package (as of this writing, in Debian's testing and unstable
releases).

Zorp is available in three versions: Zorp GPL, the free GPLed version; Zorp
Unofficial, a cutting-edge or beta version of Zorp GPL; and Zorp Professional (or
simply Zorp Pro), a commercial product based on but with more features than
Zorp GPL. If you purchase Zorp Pro, you get a bootable CD-ROM that installs
not only Zorp Pro but ZorpOS, a stripped-down Debian distribution optimized
for Zorp. With Zorp Pro, a bare-metal Zorp installation takes less than 15
minutes, excluding subsequent configuration, of course. Anyone who's suffered
through lengthy dselect sessions while trying to install just enough Debian for
one's needs can appreciate the beauty of this.

Zorp Pro also includes the new Zorp Management Server (ZMS), which allows
you to manage multiple Zorp firewalls from a central management host. The
host in turn can be operated remotely with ZMC, a GUI client available in both
Debian Linux and Windows versions. ZMS is functionally equivalent to Check
Point Firewall-1's management module, arguably the biggest reason Check

Point has conquered the enterprise firewall world. ZMS has the potential to
make Zorp very attractive indeed to sites with a lot of firewalls to manage.

ZMS/ZMC is still a little rough around the edges—Balabit isn't expecting to
release a consumer-installable version of that part of Zorp Pro in March 2004
(though at the time of this writing it is being used, successfully, by paying
customers). Even if you don't use ZMS/ZMC, Zorp Pro's smooth installation and
wide range of features, including several application proxies not supported in
Zorp GPL, make Zorp Professional worthwhile.

Unlike Zorp Pro, Zorp GPL and Zorp Unofficial require a working Linux
installation that includes the following: glib 2.0, Python 2.1, libcap 1.10 and
openssl 0.9.6g. It also requires either a Linux 2.2 kernel compiled with IP,
firewalling and transparent proxy support or a Linux 2.4 kernel compiled with
iptables, iptables connection tracking, iptables NAT and, using Balabit's TPROXY
kernel patch (www.balabit.com/products/oss/tproxy), iptables transparent
proxying. All of these features should be compiled as modules.

Once your OS is ready, you either can install Zorp GPL from binary deb
packages or compile Zorp GPL from source code (available at www.balabit.com/
downloads). Compiling Zorp GPL is a little more involved than your typical ./
configure make make install routine; see the Zorp GPL Tutorial at
www.balabit.com/products/zorp_gpl/tutorial for detailed instructions.

Next time, I'll describe how to set up Zorp GPL to protect a typical Internet—
DMZ—Trusted Network topology.

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.balabit.com/products/oss/tproxy
http://www.balabit.com/downloads
http://www.balabit.com/downloads
http://www.balabit.com/products/zorp_gpl/tutorial
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Suits

The Fracturing Desktop

Doc Searls

Issue #119, March 2004

A business work system is not a family entertainment center. Doc points out
where the “desktop” market is heading and where Linux fits.

Back in 1997, not long after Microsoft famously bought WebTV for $425 million
US, I was approached by Dave Feinleib, then a Microsoft executive, to write a
chapter for a book he was compiling on the coming convergence of—naturally
—the Web and TV. At first the book wasn't going to be published by Microsoft,
but that's what ended up happening. In typical Microsoft fashion (and over
Dave's objections), it was given a terrible title: The Inside Story of Interactive TV
and Microsoft WebTV for Windows. This title was too bad, because it otherwise
was a good book, containing little promotional poop about Microsoft products.

My chapter was the biggest one in the book. I'm glad I wrote it, because it
forced a lot of thinking that ended up in The Cluetrain Manifesto
(www.cluetrain.com/book). The concluding paragraphs of my chapter, written
almost six years ago, have relevance to the desktop focus of this month's issue:

This might look like a long shot, but I'm going to bet
that the first 50 years of TV will be the only 50 years.
We'll look back on it the way we now look back on
radio's golden age. It was something communal and
friendly that brought the family together. It was a way
we could be silent together. Something of complete
unimportance we could all talk about.

And, to be fair, TV has always had a high quantity of
good stuff. But it also had a much higher quantity of
drugs. Fred Allen was being kind when he called it
“chewing gum for the eyes”. It was much worse. It
made us stupid. It started us on real drugs, such as
cannabis and cocaine. It taught us that guns are the
best way to solve problems and that violence is
ordinary. It disconnected us from our families and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.cluetrain.com/book

communities and plugged us into a system that
treated us as a product to be fattened and led around
blind, like cattle.

Convergence of the Web and TV is inevitable. But it will
happen on the terms of the metaphors that make
sense of it, such as publishing and retailing. There is
plenty of room in those metaphors—especially
marketing—for ordering and shipping entertainment
freight. The Web is a perfect way to enable the direct-
demand market for video goods that the television
industry was never equipped to provide, because it
could never embrace the concept. They were in the
eyeballs-for-advertisers business. Their job was to give
away entertainment, not to charge for it. So what will
we get? Gum on the computer screen or choice on the
tube?

It'll be no contest, especially when the form starts
funding itself.

Bet on Web/TV, not TV/Web.

Microsoft bet the other way and lost. What they offered was Web-on-TV, not TV-
on-Web. The WebTV product was a device, plus a service, for the tube. It failed
in the marketplace. Today the brand is dead, and the webtv.com URL redirects
browsers to MSN TV, a service the site calls “a combination of an easy-to-use
set-top box and an affordable monthly subscription”. The site has all the energy
of a headstone.

Meanwhile, look at what's happening to TV. For starters, TVs aren't tubes
anymore. All the best new TVs (soon, all TVs) are flat-panel plasma and LCD
screens. They're essentially computer monitors, only with bigger pixels and
blurrier images, unless they're displaying high definition broadcasts (which are
still rare) or DVDs (which are still merely enhanced 640×480 images).

More importantly, TV programs are simply another form of content. That's the
lesson taught by new flat-panel monitors that include a TV tuner at little or no
extra cost. Right now CompUSA sells a tuner-equipped KOGi 17" 1280×1024
monitor for $399 US (after a $100 rebate). And prices are sure to drop further
by the time you read this.

If you want to be more than a desk potato and actually do something with your
TV input, you can put the tuner where it belongs—inside your computer.
CompUSA has TV tuner cards for less than $40 US, and there are plenty of
hacks to make them work with Linux. There also are plenty of hacks that let
your TV do TiVo-like PVR duty. See Video for Linux (www.exploits.org/v4l) for
piles of information on these and other projects.

http://www.exploits.org/v4l

Although most home desktop machines still are all-purpose devices, the TV
convergence that's beginning with monitors is a harbinger of two huge forks
that are coming in the desktop computing category. The first fork is one
between home and office environments, the other is between fixed and mobile
(desktop and laptop) in both environments. The two forks are orthogonal, and
the 2 × 2 result is a marketplace that's fracturing into four different categories
(Table 1).

Table 1. The New Fractured Desktop Market

In this new market the home PC turns into a family entertainment center—or
what Steve Jobs calls a digital lifestyle hub—and the office PC turns into a
generic desktop. The needs in each environment are so different that there's
little reason for the two even to maintain the same form factor. Your home PC
needs the backplane and connections to handle USB and FireWire devices,
game controllers, coaxial and composite video input from your cable TV or
satellite box and so forth. Your office PC needs to be cubicleware: a monitor
with a CPU that's connected to the Net and not much more. At home your
application suite includes a potentially infinite variety of stuff. At work you need
e-mail, a browser, minimal office productivity applications and your company's
arcane internal applications. More important, for your company's sake, your
cubicle's box needs to be managed, secured and supported easily. All of which
are reasons why Linux is getting big, fast, in the generic desktop quadrant. (See
this month's LJ Index for some of the huge numbers flying around.)

Laptops also are getting far more capable. Not long ago, if you wanted big
storage, a large flat-screen or DVD burner, your only choice was a desktop. Now
all those features (including screens up to 1600×1200) are available in desktop
replacement laptops. Add Wi-Fi, standard now on most new laptops, and your
home office can be anywhere. The choice for the road warrior professional is
mostly a matter of size. And regardless of size, the trend is clear: the most
personal computers today are laptops, not desktops.

In the January 2004 issue, I outlined the challenges that still face Linux on
laptops. Since then a number of new Linux laptops have appeared, notably
from Lindows and Element. At this moment, Lindows (whose LindowsOS is
based on Debian) has a Laptop Edition that addresses familiar power-
management and wireless card device driver issues, and it is sold bundled with

 Home Office

Fixed Entertainment center Generic desktop

Mobile
Home desktop replacement

laptop
Road warrior notebook or

laptop

other brands, starting at well under $1,000 US. Element is selling a Linux Tablet
for $999 US and a notebook for $799 US. More significantly, Mike Hjorleifsson,
Element's CEO, tells me his company is working closely with VIA, NVIDIA and ATI
to give Linux at least parity performance alongside Windows and Mac laptops
that use the same kinds of devices, such as DVD and CD-RW drives. This is a
significant development. When I asked Hjorleifsson, “Are you driving a truck
through the hole Intel left open when it neglected to release Centrino device
drivers for Linux?”, he said, “You've got it.”

It's reasonable to expect the big OEMs—Dell, HP and IBM—to continue
protecting the high margins on their Windows laptops for as long as possible by
not marketing equally functional Linux alternatives. And that's fine, because it
leaves the market open for more ambitious players who aren't afraid to
discover the market demand we all know is there—and not only in this one
category we used to call desktop.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF

Lest We Forget, Why Open Source Wins

Chris DiBona

Issue #119, March 2004

Customer experience shows that open source is the greatest insurance policy
an IT department can have.

VA Research was, for a time, the best place I ever worked. Shortly after I started
there, then-CEO Larry Augustin made it clear that one of the things he wanted
me to do was manage the company's relationship with the Linux community.
We started by collecting old machines and handing out accounts to developer
groups.

Whether it was the Free Software Foundation, Debian or Stampede, we simply
wanted people to know they had a place to go when their bandwidth demands
exceeded the limits set by their ISPs. This worked pretty well for a while, until
the number of machines on which we were hosting projects started numbering
around 40 and the extra load started taking its toll on our system
administrators. Around this time, Tony Guntharp, Tim Perdue, Uriah Welcome
and others locked themselves in a room with a few pallets of SCSI drives and 68
days later, introduced the world to SourceForge.net.

Tony and his colleagues expected about 1,000 people on the site by the end of
the year, but they had over 5,000 by the end of that first month. The growth
wasn't showing any sign of slowing down. There was pressure from some of
the executives and board members to shut down the site due to cost concerns.
Luckily for the site and for the future of VA, those concerns were held back by
the work of people like Larry Augustin and Steve Westmoreland. The code of
the SourceForge site was developed much like many of the projects on the site
under the GPL.

Then, VA got a new CEO and went out of the hardware business. GPL releases
of the code stopped dead, and installing SourceForge on-site became the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

business of the company. Along with this change, the company decided to go
proprietary.

The nature of the GPL meant the code base still was out there. After about
three months, Tim Perdue, who was part of the original team, went to work and
released GForge, a new version for those who were looking to maintain their
own or their customers' SourceForge-like sites. At this point, in the interest of
full disclosure, I should note that the company Tony Guntharp, Steve
Westmoreland and I started, Konstrux Technologies, installs and maintains
these kinds of sites for our customers. We base this business on GForge; Tim
Perdue and others have similar businesses.

SourceForge.net is a fantastic resource and continues to be; OSDN and VA
should be remembered and thanked for that. I don't mean to rail against their
decision to go proprietary, as I'm sure they felt they had good reasons to do so.

But they were wrong. From a customer and vendor perspective, sticking with a
completely open-source solution is wildly advantageous. I do understand the
profits to be gained from proprietary software, and I even believe there are
places where proprietary software is likely to remain ahead of open-source
software. If you measure the success of a code base by features, however,
open-source software is the winner. Since forking off from SourceForge, GForge
has added full administrative and installation documentation, significant code
and UI clean up, XML interfacing and an installer.

But from the customer or vendor perspective, the advantages of open-source
software too often are forgotten. Our company had a customer who needed a
role-based authentication system added onto GForge. While we were writing a
statement of work for a contract to add this piece, a programmer who had
implemented a similar system at Mitre submitted a patch to do 90% of what the
customer wanted. We were able to meet the needs of a customer without
bringing on more employees, spreading ourselves too thin or charging too
much. We thus were able to compete against proprietary vendors who were
much larger than us.

From a customer perspective, open source is the greatest insurance policy an IT
department can have. In the unlikely event Konstrux should go out of business,
our customers wouldn't find themselves with a collaborative development site
they can't maintain. This is not something that can be said about our
competitors. If they go out of business, that code becomes part of the
bankruptcy auction and their customers may be left high and dry. Through
open source, customers can protect their investments in information
technology. This fact is obvious to open-source software veterans, but I think

that people need to remember this is one of the freedoms with which we're
concerned.

The Free Software Foundation tends to speak in terms of individual liberties,
but their ideals extend nicely to business, giving companies the freedom to run
their own IT departments and to preserve their business systems without being
held hostage by hostile vendors or the courts.

Chris DiBona is a cofounder of Konstrux Technologies and was the co-editor of
the Linux Journal 2000 Book of the Year, Open Sources, and an editor for the
Web site Slashdot.org. His Web site can be found at dibona.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://dibona.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Linux Power Tools by Roderick W. Smith

Suresh Krishnan

Issue #119, March 2004

Sybex, 2003

ISBN: 0782142265

$49.99 US

I have been a UNIX user for more than ten years, and I recently made the move
to Linux. When I picked up Linux Power Tools, I thought I had nothing new to
learn about Linux, but boy was I wrong. After reading this book, I realized how
modern Linux is compared to the Unices I have used. Linux Power Tools is a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

neat how-to book that explains many commonly performed tasks. It is great to
read either from cover to cover or as a quick reference. The distribution-
agnostic tone is one of the nicest things about this book and should help it find
a wide audience.

The order in which topics appear in the book is an accurate portrayal of how a
user would build a system in real life. No information is provided about how to
install Linux on the system, however, because it's covered in your distribution's
installation guide.

This book starts off by offering tips on how to locate drivers for your devices in
case they were not detected automatically or were detected improperly. It then
moves on to tweaking disk performance parameters and optimally laying out
partitions on your hard disk. Shell programming is covered only briefly.

System administrators should love the coverage of both text and GUI system
configuration mechanisms for all the major distributions. This book contains
one of the best introductions to SystemV startup scripts I have ever read; it is
an absolute must-read. If you have wondered why fonts look so ugly in your
Web browser, you will learn the causes and solutions in the excellent coverage
of X configuration and X font configuration. Recompiling the kernel is a tricky
issue for a novice user, but this book effortlessly walks you through the
process. Any machine connected to the Internet always is under attack, and the
section on building firewalls using iptables is a life-saver. And, when you feel
ready to run your own services, Linux Power Tools provides you with
information to get the most common Internet services, such as Web and mail,
up and running in no time.

In addition, Linux Power Tools has a good index, making it easy to find specific
topics. I found a lot of tips sprinkled throughout the book, such as the -j option
for tar to pass the file through bzip2. I would recommend this book if you are a
new Linux user looking to make better use of your system or a power user
looking for a quick reference book. If you want to excel in shell programming or
become a crack sysadmin, though, you should look elsewhere.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 EmperorLinux Meteor Notebook

Tony Steidler-Dennison

Issue #119, March 2004

Built around the Sharp Actius MM10, the Meteor is the smallest fully functional
notebook I've yet seen.

Product Information.

• Manufacturer: EmperorLinux
• URL: www.emperorlinux.com
• Price: $1,700 US

The Good.

• 2.1lbs, .52" depth.
• Built-in wireless and full connectivity options.
• Easy configuration with installed Red Hat 9.
• Custom kernel featuring software hibernation.
• Focused documentation.

The Bad.

• External CD-ROM only, not included.
• Touchpad placement.
• 1GHz processor.
• Short battery life.

We live in the midst of an industry rife with buzzwords. In many ways, these
quick phrases are the coin of the marketing realm; they are words that press
some personal hot button, driving us inexorably toward the purchase of the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.emperorlinux.com

latest and greatest technological device. They're powerful tools, but the use of
these buzzwords often serves only to blur the line between new device types.

Take, for example, the current hot word used to describe mobile computers,
notebooks. Every major manufacturer has a notebook in its product line. The
word itself, it seems, is evolutionary, derived from the concept of a laptop
computer. Notebook says to the consumer, “I'm smaller than an unwieldy old
laptop, small enough to take you back to your college days and those
indispensable collections of paper bound together with thin spiral wire.”

As is so often the case, the success of the word notebook has led to its
widespread misuse. You'd be hard pressed to find a major manufacturer
carrying a line of laptops these days. The notebook imagery is too powerful,
leaving manufacturers with little choice but to throw the old laptop description
in the dustbin. Even if the device weighs in at better than five pounds, it sells
better as a notebook than it ever will again as a laptop.

Fortunately, some real notebooks are on the market that serve to clear the
confusion. These are devices that provide congruence between the notebook
imagery and its reality. Lying somewhere between a PDA and a laptop,
notebooks fulfill a critical niche for users weary of lugging the old laptop
through airports and hotel lobbies. One device in particular, the EmperorLinux
Meteor Notebook, has re-established the descriptive value of the notebook
buzzword. With dimensions and weight that rival some of my own college
notebooks, the Meteor is Linux-ready and built to travel for any savvy computer
user.

Built around the Sharp Actius MM10, the Meteor is the smallest fully functional
notebook I've yet seen. Weighing in at a mere 2.1lbs (with battery), it's light
enough for even the most wrist-weary mobile worker. With a thickness of .52",
the real danger is it may become lost in the soft-sided leather briefcase I've
used for years to carry my laptops. The moment I pulled the Meteor from its
box, I knew it held real promise to reclaim the notebook buzzword for what it
really should be.

In its factory configuration, the Meteor is marketed and installed by Sharp as a
Microsoft Windows machine. Filling a valuable niche in the mobile market,
EmperorLinux converts these notebooks and replaces the original OS with Red
Hat 9. The match of the two components is nearly perfect, providing an
extremely usable Linux desktop and application set. The 2.4.2x Linux kernel is
custom configured in the EmperorLinux shop to provide such mobile-valuable
features as software hibernation. EmperorLinux does provide the Meteor with
a minimal DOS installation for legacy users, allowing GRUB to handle the
bootloading tasks.

Clearly, some trade-offs are made in the Meteor for the sake of size. I
anticipated that its screen and keyboard size might make it difficult to use. Even
my current laptop, a Dell Inspiron 1100, has a 14" screen and a keyboard that
approximates the size and feel of a desktop computer. Surely, I thought, that
look and feel couldn't be replicated on a device so small. But upon
investigation, the 10.1" XGA LCD screen is bright and sharp, offering far better
contrast than my Dell or many of the other laptops I've seen and used. Running
at a resolution of 1024×768, the display is surprisingly easy on the eyes,
suitable even for graphics manipulation in The GIMP. With the anti-aliasing
support in Red Hat 9, I quickly came to prefer the Meteor over the Dell. The
display and feel vs. size compromise turns out to be hardly a compromise at all.

The keyboard, although undeniably tight, retains much of the feel of a laptop.
In other words, with regular use, it's quite easy to make the adjustment from
desktop to notebook. I made it without a hitch, even with the dexterity of a
corn-fed Iowan, manual dexterity that's often compared to that of our primary
export—hogs. The lone exception was the location of the touchpad. It took
some mental training to avoid tapping the pad with my thumb and
unexpectedly launching an application.

On the hardware side, a little more ground is given for the sake of the Meteor's
compact size. Although these may present some small aggravations to hard-
core coders, my sense is they are not the target market for the Meteor. With a
1GHz Transmeta Crusoe processor, the Meteor does feel perceptibly slower
than my regular laptop when compiling and installing applications. The latest
release of OpenOffice.org took nearly twice as long to install on the Meteor as it
did on the 2GHz Celeron-equipped Dell laptop. However, the Crusoe
architecture left little discernible difference in execution speed for most
applications. Once compiled and installed, OpenOffice.org seemed to run as
easily and as quickly on the Meteor as it did on any other platform in my home.
My other killer mobile application, Mozilla, opened and churned through pages
and images with the ease of a much more powerful desktop.

With 256MB of fixed DDR RAM and a 15GB hard drive, the Meteor once again
has hit the sweet spot for most users. That there's not more RAM or storage
space is, ultimately, a fair trade for making this device as small and mobile as it
is. I missed neither when trading my daily use of the Dell laptop for the Meteor.

Figure 1. Meteor ports include USB and FireWire.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7107f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7107f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7107f1.large.jpg

If you're of the personality type that is inextricably trapped in those marketing
buzzwords I mentioned, let me give you a new one to distinguish the Meteor
from the current crop of notebooks, ultra-mobile. For starters, the Meteor
comes equipped with built-in Wi-Fi. With the installed Red Hat networking tools,
it's a simple task to set up a Wi-Fi DHCP connection and start surfing or
checking e-mail within a matter of minutes. No hot spot close by? No problem.
The Meteor also features a built-in 10/100 Ethernet port or, at worst, a PCMCIA
slot into which you can slide a modem card. When you put that diversity of
connections in its proper perspective—that is, a device a half-inch thick—the
Meteor easily deserves the ultra-mobile label.

The custom kernel configuration EmperorLinux provides unlocks some other
great hardware features in the Meteor. The notebook provides FireWire and
USB capabilities, with one and two ports respectively. The Meteor also features
a unique USB-connected vertical docking cradle. This feature allows a user to
share the notebook's hard drive with a desktop system or to sync data between
the desktop and notebook with ease, even when the notebook is powered
down. With the Meteor off, I placed it in the cradle. This assigned the drive to /
dev/sdb. I then was able to mount the drive at /mnt/meteor and the /home
partition at /mnt/meteor/home. With this completed, I moved data between the
machines effortlessly from the command line. I also completed these tasks by
opening multiple instances of Nautilus, in effect dragging and dropping data
from one machine to the other.

Figure 2. The Meteor Syncing from Its Cradle to a Desktop

In short, the real strengths of the EmperorLinux Meteor are many. It's highly
mobile, with the capability to connect to the network across the full range of
options. With Wi-Fi becoming increasingly pervasive, the Meteor/Red Hat
combination provides both built-in hardware and easy configuration for
connecting to the nearest hot spot. The custom kernel relieves even a newbie
user from the pain of unlocking all the built-in hardware features. And the sync/
storage capabilities provided by the USB docking station are the quickest path
to taking your data on the road.

If those features don't fill your bill, consider the documentation provided by
EmperorLinux. Though a thin book, it provides step-by-step guidance for
setting up and using the most critical features of the Meteor. Unlike some
manufacturer-provided documents, the Meteor documentation is kept current
with the version of Linux in use in the Meteor. It also features custom kernel-
specific information for those who are technically inclined. The documentation
is exactly enough, without being too much.

You might think I found the Meteor to be without flaws, but that's not quite
true. The flaws, however, are not show-stoppers. As expected, they're related in
large part to the size of the Meteor. There is no built-in CD-ROM, although you
can connect one to a USB port. As I've already noted, the touchpad placement
is a bit awkward. I've never been a big believer in the mouse nubbin found on

some laptops, but the size of the Meteor would make it a good candidate for
such a pointing device. The processor is a bit too slow to push the Meteor into
the class of machine necessary for developers and coders. Despite its power-
miser Transmeta Crusoe processor, the Meteor sucks down a battery like a
script kiddie sucks down a Big Gulp. On average, I could expect less than two
hours of battery life before breaking out the power cord. The built-in Wi-Fi
always is on, regardless of whether it has a connection, which adds to the
power requirements and diminishes battery life. Finally, at $1,700 US, you
actually might find the small Meteor a bit bigger than your wallet. Even at that
price, it's a good investment of time and money for the enterprise.

Figure 3. Its small size makes the Meteor a true notebook.

So, let's refine our marketing-speak a bit. Laptop does not equal notebook. The
Meteor Notebook is proof of that, it being the only Linux-equipped device truly
to fill the notebook bill. Call it an ultra-mobile if you must, but the Meteor surely
will redefine how you hear the notebook marketing message from now on.

Tony Steidler-Dennison is a freelance PHP programmer and technology
consultant who frequently writes about mobile Linux technologies. His Weblog,
“Frankly, I'd Rather Not” (steidler.net), covers topics from technology to politics.
Tony's other on-line presence, uptime (uptime.steidler.net), focuses on Linux
for new users. He's currently writing his first book, Practical Linux
Administration, and gladly discusses Linux-related topics at tony@steidler.net.

http://steidler.net
http://uptime.steidler.net
mailto:tony@steidler.net

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 Will DMCA Lawyers Burn Books?

In the From the Editor in the December 2003 issue, Mr Marti mentions the
courts decided in favor of “banning our technology journalism colleagues at
2600 from even linking to one DVD-descrambling program, DeCSS.” I cannot
help but wonder if this censorship would go so far as to be enforced against
paper publications. In other words, would they press this law against a
newspaper or magazine (like yourselves) who might decide to print the URL of
such a link? It would be interesting if they would push the DMCA to such an
extreme as to be clearly contrary to the freedom of the literal press, as
opposed to the Web-based “virtual” press.

—
Lisa Corsetti

Maybe if some magazine published the URL www-2.cs.cmu.edu/~dst/DeCSS/
Gallery/dvd-hoy-reply.htm, you would find out. —Ed.

ATI Open Source Friendly?

In the December 2003 issue of LJ, page 40, Glenn Stone raises the point that the
“Big 3” graphics core logic vendors are standing firmly on the side of releasing
binary-only drivers for their products. I wanted to mention that ATI provides
programming information for most of their RADEON line under NDA to
interested developers. Some XFree86 and DRI developers already have access
to this documentation, and an open-source RADEON driver is underway.

ATI also provides code samples and support for their products; a Mach64 DRI
driver recently was developed from scratch due to their involvement. Neither
NVIDIA nor Matrox will provide any programming information, even under
NDA, to developers wishing to write open-source drivers for their recent
products. ATI, therefore, can be regarded as the one mainstream company
that, while understandably not running to open source the drivers it has

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www-2.cs.cmu.edu/~dst/DeCSS/Gallery/dvd-hoy-reply.htm
http://www-2.cs.cmu.edu/~dst/DeCSS/Gallery/dvd-hoy-reply.htm

developed in-house, is nevertheless a friendly force to open-source developers
as well as all users that prefer open source.

I also have another approach to consider. Given that 3-D graphics is still a
cutting-edge technology upon which new ground is broken on a daily basis, the
OEMs consider it crucial to their business model that their proprietary secrets
remain guarded. An all-or-nothing approach is counterproductive. I say that we
firmly and reasonably draw a line beyond which further source code or
documentation revelation would be of diminishing return, and ask that of the
companies involved, instead of asking for everything including their crown
jewels.

Stone also calls for debate on this topic. I see very little to debate, besides to
buy products only from the company that gives you the level of support you
desire, whether it be binary-only drivers that work “most of the time”, open-
source drivers developed and supported in-house or simply the availability of
programming documentation for their hardware. Also, consider the value of
whether you wish to participate in a self-supporting user community, or
whether you really don't mind being dependent on a single source of support
for the product and its associated software.

Furthermore, it is imperative that when you make a buying decision that you
contact the sales departments of both the company from which you bought the
product, to tell it how its enthusiasm for open source caused you to buy its
product, and the company's main competitors, to let them know what your
criteria were and why you did not choose their product. Only by making
informed buying decisions and providing feedback to the companies involved
can we ever expect our preferences to have an impact on the market as a
whole. Be active if you want to see change.

—
Ryan Underwood

 Linux Vendor Helps Low-Budget Customer

Because Monarch Computer Systems supported the Ultimate Linux Box Project
[LJ, December 2003], I have been considering them when purchasing a new
system. Recently, I had a problem with a system that required me to make a
contingency plan in case I could not get it fixed. It turned out that I did fix the
system, which had a strange power supply problem. However, Monarch was so
helpful to me that I thought the least I could do was commend them on their
service. I wrote to Monarch:

Thank you very much for your help. I borrowed a PS
from a friend yesterday and that resurrected my A7V
system. So I will not be needing a system right now.
This is good for me because our little company isn't
doing so well and my salary has been cut by one-third.
However, when I get more work or get my salary back,
I want to get another system as an upgrade and to
make this A7V system a backup. When that time
comes, I will be coming to Monarch first! Chris has
been super-helpful for me in preparing a low-budget
new system. This is even more impressive because he
knew from the start that this was not going to be a
high-margin sale!

I give Monarch my highest recommendation.

—
Michael George

 Linux-Powered Organ

Those of you who know me well also know that I collect automated musical
instruments and have a fondness for organ music. Nick Walker found this link
(www.eetimes.com/sys/news/OEG20031203S0032) and sent it to me about an
Aeolian-Skinner organ at Trinity Church in NYC that was destroyed by the dust
and dirt caused by the World Trade Center collapsing on 9/11. From there I
read several articles, including the one at this address: www.organpower.com/
DoubleOpen5401.pdf. On page 6 of the PDF it has the words:

The decision was made to develop the organ's control
and tone generation systems in a Linux environment.
Linux, a highly stable operating system, is considered
by many to be the finest environment in which to run
this type of standalone application on either standard
or embedded controller PCs.

The passage is from an article entitled “Epiphany on Wall Street”, Open: A
Publication of the New York City Chapter of the American Guild of Organists.

—
Jon “maddog” Hall

 Why USB Devices Mount Read-Only

In the December 2003 issue, an article by Rick Moen on the use of USB Flash
storage devices (“Floppies for the New Millennium”) includes the following:
“...no matter what you do, the Flash disk always mounts read-only....Exactly why
/bin/mount insists that the Flash disk is write-protected and must be mounted
read-only is a genuine mystery.”

http://www.eetimes.com/sys/news/OEG20031203S0032
http://www.organpower.com/DoubleOpen5401.pdf
http://www.organpower.com/DoubleOpen5401.pdf

I am the author and maintainer of the driver that talks to this entire class of
devices. To me, it's not a mystery. USB mass storage devices are handled by a
virtual HBA in the SCSI subsystem. For direct-access type devices (disks, Flash,
etc.), sd.c checks the write-protect status with a MODE_SENSE command. The
problem is, MODE_SENSE isn't used by Microsoft Windows. Thus, the firmware
to recognize, process and respond to that command properly often is lacking
from USB devices, especially those that are under extreme price pressure, such
as the keychain-type Flash devices discussed in the article. Sometimes, they
simply respond with incorrect data.

This problem is widespread. I've even seen quite a few devices that crash their
internal firmware when they see certain MODE_SENSE or MODE_SENSE_10
commands. This is basically a matter of poorly implemented devices—the
device is tested with a popular OS and not fully coverage-tested for compliance
to the open and published specifications.

Up to a certain 2.4.x kernel version, a failure of the check for write-protect
would default to write-protected status. Often this is accompanied by a
message from the kernel (sd.c: test WP failed, assuming write
protected). Later, a patch was merged that made the assumption write-
enabled. The 2.5/6 kernels introduced a new problem—sd.c wants to check for
mode page 8, which causes more devices to die. Currently, those of us involved
with USB storage development are trying to identify what MODE_SENSE/
MODE_SENSE_10 commands are used by Microsoft Windows to speak to these
devices—the theory is that if we can identify these commands, then they must
be safe for Linux to use.

—
Matthew Dharm
Author/Maintainer, Linux USB Mass Storage Driver

 Safely Allowing Root Access

As a newbie in Linux development, I was delighted to read the article
“Controlling Hardware with ioctls” by Lisa Corsetti [January 2004]. So I
downloaded the source code and discovered that the ioctl calls used work only
if you are running as a privileged user, which I was totally unaware of. In the
context of the article, this worked great, but it would be nice if a similar piece of
code had been shown to get the same information for an ordinary user.

—
Jeffrey Goddard

When you need ordinary users to do a task that's reserved for root, use sudo:
www.courtesan.com/sudo. —Ed.

 Photo of the Month: We're Historic

I recently asked the Computer History Museum (www.computerhistory.org) if
they would like my back copies of Linux Journal. Museums always are reluctant
to take items, as it is hard to raise money to take care of the things. So, it was
great to hear they were excited to add LJ to their collection. I thought you might
like to see Linux Journal becoming a part of history; here is museum curator
Sharon Brunzel holding LJ #1. Note that she is wearing curator's gloves,
required when handling all historical objects.

—
Pardo

 Classified Ads, Please

I've been subscribing to Linux Journal for three years now. Great magazine, but
I noticed you don't have a classified section. Many readers can benefit from
small, low-cost classifieds. I advertise my group in a local computer paper's
classified section and was disappointed to see LJ doesn't have any classifieds. A
section for user groups might be a good addition or simply “help wanted” and
“education and training”. Linux thrives on user group participation.

—
Rick Tomaschuk
President, Toronto Area Novell User Group

http://www.courtesan.com/sudo
http://www.computerhistory.org

 More on Controlling Devices, Please

Jason Ellison's article “Controlling Devices with Relays” in the December 2003
issue was a refreshing complement to the other articles on kernel scalability. I
have been using Linux for almost ten years, but I still consider myself to be
both a novice administrator and programmer. Jason's article was perfect for all
of us who don't spend our days tweaking operating system internals, but who
know just enough about our computers to be dangerous.

In upcoming issues, I would enjoy seeing more articles that take this cookbook
approach to describing the diversity of Linux solutions—defining a short
problem, reviewing the options available and discussing the solution with
enough detail that a sufficiently motivated novice can ring a bell or two at home
if they desire.

I work as a mechanical engineer. As part of my job, there are countless
opportunities to implement solutions similar to the warning bell system that
Jason created. Combining computer control with mechanical hardware can save
tremendous amounts of money. The ability to make use of inexpensive
components, existing computer equipment and validated Linux software, as
opposed to purchasing an overpriced supervisory control and data acquisition
(SCADA) package should be applauded.

—
Joe Stevenson

 Radio Observatory Uses Linux

The Jodrell Bank Observatory appears to be using Red Hat Linux in connection
with looking for a signal from the European Space Agency's Mars Lander,
Beagle-2. Look in the lower-right corner for a “waterfall display” (time vs.
frequency) plot of the spectrum around Beagle-2's center frequency. The
desktop is clearly GNOME on Red Hat. The signal of interest is 5 watts from
about 98 million miles away (www.jb.man.ac.uk/public/Thursday3.jpg).

—
Steve Eitelman

 New Site for Slashcode Webmasters

Installing slashcode, the content management software that runs the popular
Internet site Slashdot (www.slashdot.org), always has been a difficult and
arduous task for even the hardened administrator. In response to this, in June
of 2002, I created the “Install Slash For Dummies” document, very much like
Linux Journal's own slash installation guide (/article/6674). However, the

http://www.jb.man.ac.uk/public/Thursday3.jpg
http://www.slashdot.org
https://secure2.linuxjournal.com/ljarchive/LJ/000/6674.html

document did not provide a comment system nor did it provide a community-
based forum. In response to this, I have created www.installslash.org. This is a
new community site, and its goal is to make it as easy as possible to install
slash, and at the same time provide support and valuable information on
modifying slash to your liking, no matter at what skill level you reside.

—
Terry Vaughn

 Can US Federal Employees Contribute to GPL Projects?

Something that I have yet to see handled in the Open Source community is the
difficulty that federal employees have in contributing to open-source/free
software. I'd love to contribute more and help out with projects that I use at my
(federal) workplace, but I understand that the law prohibits that. Federal
employees cannot hold or give copyright in any code created by them, but the
code must be public domain. This makes contributing difficult at the very least.
I believe that some GPL or other license projects have significant federal-
employee written code, but I do not understand how they can place it under
the GPL. I'd love to see a treatment/explanation of this. I have not yet seen any.
If something does exist, please point me to it.

—
Andrew Gilmore

Any project, under any license, can accept public domain code. The public
domain is not a license; see /article/6225. —Ed.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.installslash.org
https://secure2.linuxjournal.com/ljarchive/LJ/102/6225.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• Agata:
• Archimede:
• diff -u: What's New in Kernel Development
• Open eGov
• LJ Index—March 2004
• They Said It
• ZoneCheck:

Agata: www.agata.org.br

David A. Bandel

Issue #119, March 2004

Agata is a PHP application that runs directly in PHP, not in a Web server. Why? I
have no idea, but it works. And, if you need something that resembles (so I'm
told) Crystal Reports in Windows, take a look at Agata. It can be used against
most SQL databases, although I tested it only against PostgreSQL. Agata is easy
to install and run and is extremely flexible. It is also pretty and does graphs.
Requires: PHP and php-gtk.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.agata.org.br
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297agataf1.large.jpg

Archimede: mcz.altervista.org

David A. Bandel

Issue #119, March 2004

Many years ago in college I had a completely programmable calculator. Last
time I saw it, the calculator was covered with dust and I couldn't find a battery
for it, so I started using spreadsheets. Now, it looks like I can have a calculator
again whenever I want it, at least on the computer screen. Archimede has
functions for nearly everything including financial calculations, trigonometric
and math functions as well as calendar functions. Requires: libX11, libpthread,
libdl and glibc.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7297agataf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297agataf1.large.jpg
http://mcz.altervista.org
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297archimedef1.large.jpg

diff -u: What's New in Kernel Development

Zack Brown

Issue #119, March 2004

For several 2.6 test releases, Linus Torvalds had been hinting that a handoff to
Andrew Morton was imminent. In fact, as of 2.6.0-test11, it's official. Andrew is
now the 2.6 maintainer, even before the official 2.6.0 kernel is released. An
interesting facet of this is that the 2.6.0 release is a major event, and Linus is
giving Andrew the spotlight. This fits neatly with Linus' response to statements
that he is indispensable. Linus always has maintained that he is “just another
developer” and not the absolute focal point folks have made him out to be in
the past. By stepping aside, Linus may be trying to minimize his public role.

In theory, the purpose of the stable kernel series is to approach true stability
gradually. In practice, features from the ongoing development series are often
back-ported to the stable series, after some testing. In some cases, the
development work is done directly in the stable series, if the changes are
isolated clearly and unlikely to cause problems outside of their own small
realm. But in general, the ultimate aim of pure stability tends to grow stronger
and stronger. And now, with the handoff of the 2.6 tree to Andrew Morton,
Marcelo Tossatti has decided to clamp down on new features going into the 2.4
tree, and aside from a few possible exceptions like XFS support, 2.4 quickly is
becoming a “bug-fix and security-fix only” tree.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7297archimedef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297archimedef1.large.jpg

Pontus Fuchs is working on what to some might seem a radical concept. He is
attempting to get certain Microsoft Windows drivers to work with the Linux
kernel. Considering that the drivers were written for a completely different
operating system, he's actually had a surprising amount of success with this
project. Specifically, certain wireless LAN cards have no published specifications
or Linux drivers, either free software or binary-only. So far, he's been able to
use his Broadcom 4301 successfully, and Pavel Machek has gotten a Broadcom
94306 working as well.

Carl-Daniel Hailfinger, Manfred Spraul and Andrew de Quincey have reverse
engineered the nvnet driver for the NVIDIA nForce MCP Ethernet adapter and
written their own GPLed driver. Actually, to preserve a clean-room
development environment that would preclude the possibility that any part of
NVIDIA's driver would be copied into their GPLed version, Carl-Daniel and
Andrew did the reverse engineering and documented the hardware, while
Manfred wrote the new driver from their specifications. In this way, Manfred
was guaranteed to have no direct knowledge of the internals of the original
driver. Reverse engineering is a time-honored computer-science technique to
achieve interoperability, although there is a strong movement to make certain
kinds of reverse engineering illegal in many countries. The DMCA (Digital
Millennium Copyright Act) is an example of legislation that attempts to control
reverse engineering, but what its true impact will be is still being hashed out in
the courts.

Some signal handling behavior has changed between kernel 2.4 and 2.6.
Typically, there are some signals (called thread-synchronous signals) that
threads are unable to block. In the 2.4 kernel, a thread attempting to block one
of these signals would fail, and the signal would come through anyway. This is
not necessarily the most desirable behavior, because there is no legitimate
reason for a thread to try to block one of these unblockable signals. In the 2.6
kernel, therefore, when a thread tries to block a thread-synchronous signal, it
dies. So the programmer sees right away that something was done that
shouldn't have been done. Linus says the new way is the best way, but of
course, many past “best ways” have led to even better ways. The same may
happen here.

Open eGov

Doc Searls

Issue #119, March 2004

In democracies, the most interesting politics are the kind you can describe with
sports metaphors. That's even true when the big story is about technology. This

is what we see in Molly Ivins' line, “the Internet is to politics what television was
in the 1960 Kennedy-Nixon race”.

Yet democracy isn't only about elections. It's also about governance. And that's
where Linux and open source quietly have been making huge changes over the
last year or so. Here's a list of four related initiatives that radically are changing
the rules and methods of technology procurement and implementation in
government:

• The Open Source Software Institute (OSSI, oss-institute.org) is on a
mission “to promote the development and implementation of open-
source software solutions within US federal and state government
agencies and academic entities”.

• OSSI is working on a US National Institute of Standards and Technology
(NIST) validation for OpenSSL, the robust, commercial-grade, full-featured
and open-source toolkit implementing the Secure Sockets Layer (SSL v2/
v3) and Transport Layer Security (TLS v1) protocols (oss-institute.org/fips-
faq.html).

• Project Leopard (leopard.sourceforge.net) is an “eGovernment Web
services platform based on LAMP (Linux, Apache, MySQL, PHP/Perl/
Python)”. Project founder and Linux Journal contributor Tom Adelstein
says Leopard is a huge time and hassle saver. “All you have to do is write
to this module installer that we have. So, you basically can do the Web
pages and database schema and you're done.”

• The Open Government Interoperability Project (ogip.org) produced
Project Leopard and is working on the Open Government Interoperability
Standard (OGIS), “an initiative to develop an open specification for
ensuring that governments and administrative software applications work
together more effectively”.

“These efforts are still new”, says Tom, “but already there is a rewarding sense
that their implementation is inevitable. The cost is so low, and the rewards so
high.”

LJ Index—March 2004

• 1. Estimated thousands of US municipalities that are ripe for open-source
applications: 88

• 2. Minimum estimated dollar savings by the US Navy on one open-source
interoperability project: 300,000

• 3. Thousands of Linux client installations planned for deployment by
Sherwin-Williams Co.: 10

http://oss-institute.org
http://oss-institute.org/fips-faq.html
http://oss-institute.org/fips-faq.html
http://leopard.sourceforge.net
http://ogip.org

• 4. Thousands of projected Linux-based Sun Java Desktops in a rollout in
the UK: 800

• 5. Minimum millions of Linux-based Sun Java Desktops projected for
deployment per year in China: 1

• 6. Millions of Linux-based Sun Java Desktops for which Sun is “aiming” in
China: 500

• 7. Percentage range of municipal IT budgets “eaten up by productivity
suites and tools”: 60–70

• 8. Projected dollar costs to municipal budgets of Linux-based open
productivity suites and tools: 0

• 9. Percentage of CIOs and IT managers reporting Linux server use in
Australia and New Zealand: 32.4

• 10. Year-over-year Linux server shipment share percentage growth: 51.4
• 11. Income generated in millions of dollars by Linux servers in the last

quarter (before November 2003): 743
• 12. Percentage of the server market share for Linux by 2007 at the latest:

45
• 13. Percentage of small companies currently testing Linux: 25
• 14. Percentage of small companies that hope Linux will replace Windows

as their core OS: 50
• 15. Percentage of the increase in spending on Linux server shipments

between July and September 2003: 16
• 16. Percentage unit increase in Linux server shipments between July and

September 2003: 32
• 17. Number of persons supportable by one technical person at Hill House

Hammond, before Linux: 50
• 18. Number of persons supportable by one technical person at Hill House

Hammond, after Linux: 500
• 19. Minimum percentage of spam relayed off home computers whose

owners are unaware: 33

• 1, 2, 7, 8: Open Source Software Institute

• 3: LinuxInsider

• 4: The Register

• 5: CNET Asia
• 6: vnunet, Sun executives
• 9: CNET
• 10, 11: Ask Web Hosting, IDC

• 12: The Inquirer, Meta Group

• 13–18: ZDnet/UK, sourcing IBM and IDC studies and reports

• 19: New York Times, sourcing Sophos

They Said It

We're going to immediately roll out the Java Desktop System to between a half
million and a million desktops in 2004....It makes us instantaneously the No. 1
Linux desktop player on the planet.

—Scott McNealy, Business Standard (www.business-standard.com/ice/
story.asp?Menu=119&story=29323)

Linux servers have demonstrated six consecutive quarters of year-on-year
revenue growth, proving that they are not a flash-in-the-pan technology and
that they are meeting real-world computing requirements in HPC and
commercial deployments.

—Jean Bozman, IDC (www.askwebhosting.com/story/25/
IDC_Linux_Server_Growth_is_Nearly_50_Percent_Year-Over-Year.html)

Future wide-scale implementations of Linux-based, mission-critical business
applications may get less press, but they will continue to happen at all of the
largest global financial institutions....Critical to this migration will be the
ongoing support of the large hardware vendors, especially their ability to
provide support tools and services for porting and new development. We
believe that within the next 18–24 months, installing a Linux-based software
package will become as normal as installing a Windows or Sun Solaris system.

—Damon Kovelsky, IDC (www.internetnews.com/ent-news/article.php/1559661)

There are no good excuses for binary modules. Some of them may be
technically legal (by virtue of not being derived works) and allowed, but even
when they are legal they are a major pain in the ass, and always horribly buggy.

I occasionally get a few complaints from vendors over my non-interest in even
trying to help binary modules. Tough. It's a two-way street: if you don't help me,
I don't help you. Binary-only modules do not help Linux, quite the reverse. As
such, we should have no incentives to help make them any more common than
they already are.

—Linus Torvalds, on the linux-kernel mailing list

http://www.business-standard.com/ice/story.asp?Menu=119&story=29323
http://www.business-standard.com/ice/story.asp?Menu=119&story=29323
http://www.askwebhosting.com/story/25/IDC_Linux_Server_Growth_is_Nearly_50_Percent_Year-Over-Year.html
http://www.askwebhosting.com/story/25/IDC_Linux_Server_Growth_is_Nearly_50_Percent_Year-Over-Year.html
http://www.internetnews.com/ent-news/article.php/1559661

ZoneCheck: www.zonecheck.fr

David A. Bandel

Issue #119, March 2004

If you don't remember all the DNS RFCs, or if parts you should know slip your
mind, use ZoneCheck to look over your name server zone files to see whether
you've maintained your zone as the RFCs suggest. I had forgotten, for example,
that the expire time must be seven times greater than the refresh. I had only
four times on my zone when I checked. Some 105 different checks are applied.
It can be run from the Web or the command line. Requires: Ruby, Ruby
extensions yaml, exml and a Web server that supports CGI (optional).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.zonecheck.fr
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297zonef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297zonef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7297zonef1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 Shutdown Doesn't

I have a dual-OS machine running Microsoft Windows XP and SuSE 8.2. When I
do a shutdown in XP my PC powers off. But when I turn off this computer in
Linux, my PC does a reboot.

—
Andre Bouve

andre.bouve@pandora.be

This is most likely due to inherent problems between SMP and APM. The two
standards are mutually incompatible, apparently resulting from an unavoidable
race condition among the multiple processors. In Linux's case, APM is disabled
in SMP kernels, even if those happen to be running on single-processor
machines. You might try switching to the UP (uni-processor) kernel, or you
could compile your kernel with an option that forces the APM power-off feature
to work.

—
Jim Dennis

jimd@starshine.org

Try passing apm=power-off to the kernel at boot time.

—
Usman S. Ansari

uansari@yahoo.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:andre.bouve@pandora.be
mailto:jimd@starshine.org
mailto:uansari@yahoo.com

 Support for ISA Sound Card

I'm having a problem configuring my sound card for my Red Hat 7.2 system.
When I run sndconfig, it comes back that I have an ISA PNP card, a
SoundBlaster 32 Wavetable card to be exact. When it goes to test the sound I
get these errors:

/sb.o : init_module: no such device
/sb.o : insmod
/sb.o : failed
/sb.o : insmod sound-slot-0 failed

When I run dmesg I get this:

sb: No IsaPnP cards found, trying standard ones...
sb: I/O, IRQ, and DMA are mandatory
No detected device

I get that same message when I try any different SoundBlaster card in the list.

—
Joseph Helton

hteam1@mindspring.com

It sounds like your card is configured with I/O base address, IRQ (interrupt
request) and DMA (direct memory access) settings that the kernel can't
autodetect. You might have to add a line to your /etc/modules.conf that looks
something like:

option sb io=0x220 irq=5 dma=1 dma16=5 mpu_io=0x330

where you replace the numbers with those that your card is using.

—
Jim Dennis

jimd@starshine.org

 Keeping Bandwidth Bills Down

My broadband ADSL Internet connection has a monthly fixed fee if downloads
don't exceed some maximum limit; at the time of this writing, the limit is 3GB.
I'm using PPP over Ethernet to connect to the Internet. I want to know if there is
some application that can let me have an account of the transferred bytes over
my connection.

—

mailto:hteam1@mindspring.com
mailto:jimd@starshine.org

Guillermo Gimenez de Castro

guigue@craam.mackenzie.br

There are several. ipac is the IP accounting package. MRTG is the multirouter
traffic grapher, which may be overkill for your needs, as it graphs usage rather
than simply totaling it. You also can use the ifconfig command and look at the
received (RX) and transmitted (TX) bytes. All in all, ipac is probably the simplest
package for you to examine. See www.daneben.de/ipac.html.

—
Jim Dennis

jimd@starshine.org

Also, the sar command can provide you with several statistics about your
network interfaces; as root try the command:

sar -n FULL

which will provide you with transmitted/received packets and bytes among
other information in a timed table. Do a man sar for further information.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Slackware on Serial ATA System?

I am trying to install Slackware 9.1 on a new system that uses a serial ATA drive.
The system uses an Intel motherboard with two two-device IDE ports and two
serial ATA ports. I can have a total of six devices set up with this rig. The two IDE
ports have two CD-ROM drives and a Zip drive attached to them. One SATA port
has the only hard drive, the other is unused. I am booting from Slack's
installation CD, and the boot proceeds normally until it gets to the point where
the drives are discovered. The system sees all of the ports and sees the SATA
drive as hde on IDE2. I have partitioned it so that hde4 is the partition that I
want Slack to recognize. The system knows the drive is there, but it stalls at a
point with this message hde4: loading IDE drivers. I can't get any
further than this. What should I look for in dealing with SATA drives on Linux?

—

mailto:guigue@craam.mackenzie.br
http://www.daneben.de/ipac.html
mailto:jimd@starshine.org
mailto:fbarousse@piensa.com

Ren Colantoni

colanton@lacitycollege.edu

You will find yourself doing some tweaks depending on the hardware and
distribution you have. A good starting point to find out more about this is
deploylinux.typepad.com/main/2003/07/linux_sata_supp.html. There you will
find tips specially related to incompatibilities of controllers, drives and Linux.

—
Mario Bittencourt

mneto@argo.com.br

 Best Software for Backup?

After I picked up my first copy of Linux Journal on the newsstand, I couldn't
believe that I'd found in one issue the answers to several of the problems I've
been up against. I immediately bought that issue and subscribed on-line as
soon as I got home. After digesting the information on Nagios, I'm now looking
to replace my company's current DLT backup solution. Our current
environment runs a Windows/Veritas Backup Exec 8.6 solution and we're
paying a hefty price for these systems. My question is this; is there a viable
Linux solution that supports a wide variety of tape backup hardware? Currently
I have four single DLT 15/30GB drives at the office, but I also need to support a
seven-tape DLT autoloading library on my home LAN. I'd like something that
doesn't require a huge investment in time to learn. After all, it only takes the
average user about two clicks of the mouse to lose a file, so I'd like to be able to
restore it as easily.

—
Eric Patat

epatat@charter.net

BRU (Backup and Recovery Utility) is reasonably well regarded. It's proprietary
but not very expensive. More information can be found at www.tolisgroup.com.
BURT (BackUp and Recovery Tool) is at the University of Wisconsin,
www.cs.wisc.edu/~jmelski/burt, just as AMANDA was created at the University
of Maryland.

—

mailto:colanton@lacitycollege.edu
http://deploylinux.typepad.com/main/2003/07/linux_sata_supp.html
mailto:mneto@argo.com.br
mailto:epatat@charter.net
http://www.tolisgroup.com
http://www.cs.wisc.edu/~jmelski/burt

Jim Dennis

jimd@starshine.org

Two other popular backup programs are Amanda, at amanda.org, which is free,
and Arkeia, at arkeia.com, which is proprietary.

—
Don Marti

info@linuxjournal.com

Backup software isn't necessarily the best reason to choose Linux, not because
it isn't available, but because it's often the same product. Most of the major
commercial vendors of backup solutions now support Linux. There are also
mid-range solutions that are more cost-effective but still provide graphical
wizards and management interfaces. If you would prefer an open-source
solution, there is a wide variety of these options available as well, but you also
could simply rely on good old tar and gzip or something more robust, such as
cpio. You will need the magnetic tape tools package, mt, and the appropriate
driver(s) installed in your kernel. If you do go with a tape library, you also may
need to search around for a utility that controls the media loader on the device,
so you may want to do some research ahead of time before you buy one.

—
Chad Robinson

crobinson@rfgonline.com

We have found that using our own scripts (mostly in Python) for backups (local
and distributed), backup verification and validation and restores has been the
best alternative so far for the different backup needs we have. We do perform
backups into tape devices, CD-based technologies and into other physical hard
disks as data and disk backup. A couple of references: www.linux-backup.net
has various pieces of information regarding backups in Linux; also look at the
book Unix Backup and Recovery, which Linux Journal reviewed a while ago.
Although the book is a bit old, it may still be worth reading. The LJ review is at /
article/3839. On the hardware side, check the site www.linuxtapecert.org.

—
Felipe Barousse Boué

mailto:jimd@starshine.org
http://amanda.org
http://arkeia.com
mailto:info@linuxjournal.com
mailto:crobinson@rfgonline.com
http://www.linux-backup.net
https://secure2.linuxjournal.com/ljarchive/LJ/078/3839.html
https://secure2.linuxjournal.com/ljarchive/LJ/078/3839.html
http://www.linuxtapecert.org

fbarousse@piensa.com

 Best Tool for a WordPerfect Expert?

I've been using UNIX in some form or other for over two decades. Using Red
Hat, I put out camera-ready copy for my latest book, The Economy and Material
Culture of Russia, 1600–1725—668 pages, larger format, with 104 graphs
produced by Stata from 108,000 records in filePro16. My exceptionally handy
word processor was WordPerfect for the camera-ready copy. Now the
university is forcing me to upgrade my computer, which will have Red Hat Linux
9 on it. My understanding is that Corel no longer maintains WordPerfect, which
won't run on Red Hat Linux 9. What is the most suitable word processing
package for this project? What do you recommend?

—
Richard Hellie

hell@midway.uchicago.edu

There are many word processors available, and your choice of them depends
on your publishing needs. You should begin by examining the ever-present
Emacs and the LaTeX and SGML document description languages. Most people
find that these are too obfuscated to suit their needs, but it's always worth the
examination as these are extremely powerful document layout products once
you know how to use them. If you prefer a WYSIWYG word processor, you can
install OpenOffice.org or KWrite, both of which are open-source products. Or, if
you need better compatibility with Microsoft Office users, you can try either
Sun's StarOffice product, which is OpenOffice.org with additional fonts and
commercial support, among other things, or IBM's Lotus SmartSuite, which is
also a commercial product. These are only a few of the options available, and
these options do not even include the desktop publishing products. Take a look
around—you might be surprised at the variety of options available.

—
Chad Robinson

crobinson@rfgonline.com

Like much unsupported proprietary software, you can keep WordPerfect going
by installing old versions of libraries (linuxmafia.com/wpfaq). If you want to
keep the ability to import Microsoft Word documents, you need to apply

mailto:fbarousse@piensa.com
mailto:hell@midway.uchicago.edu
mailto:crobinson@rfgonline.com
http://linuxmafia.com/wpfaq

another fix, too: www.linuxjournal.com/article/5655.

—
Don Marti

info@linuxjournal.com

 Hide That Password!

I know I can't be the only one to exhibit this embarrassing behavior on a
semiregular basis, so here goes. For whatever reason, there have been times
where I inadvertently disclosed a sensitive password on the command line,
mistakingly thinking that my input was going to the stdin of a different program
such as ssh or smbclient. I use the bash shell, so this means my carelessness
gets written to a history file. Normally, this isn't too big of a problem, but
sometimes I end up using a shared account on the system. Needless to say,
whoever else has access to this account ends up being able to view my
password in the history file. Is there an easy way of telling bash to discard
entering a prior or specific entry into its history? I'd rather not have to edit the
history file manually, which seems to be the only way I know to cover my tracks.

—
Chris DeRose

cderose@deroseandslopey.com

First, if you realize your mistake before you press Enter, simply press Ctrl-U.
Doing this erases all of your typing on the current line. This works at the shell
prompt (most Bourne-compatible shells), the login prompt and even in vi (while
still in insert mode). If you've already pressed Enter, then your fastest, easiest
recourse is simply to re-read the history file that's already on the disk. Since the
history normally is written only on logout, this will overwrite the in-memory
history. Type history -r ~/.bash_history. Of course, this also will wipe
all of the other entries from the current session, and it will be as if you just
logged in (as far as your history goes).

—
Jim Dennis

jimd@starshine.org

http://www.linuxjournal.com/article/5655
mailto:info@linuxjournal.com
mailto:cderose@deroseandslopey.com
mailto:jimd@starshine.org

Do a man history to check on the options of the history command:

history [n]
history -c
history -d offset

With no options, history displays the command history list with line numbers. A
numerical argument of n lists only the last n lines. The -c or -d options, if
supplied, have the following meanings: -c, clear the history list by deleting all
the entries and -d, offset Delete the history entry at position offset.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Debian Install for SATA Drives?

Is there a Debian-based distribution that would allow me to install on an SATA
hard drive? The hard drive controller is a Micro-Star International RAID Bus
Controller, using ata_via per hardware identification by YaST, and/or a VIA 8237
per the MSI KT6 Delta mainboard manual. I want to switch back to Debian, but
the installer does not recognize that my system has a hard drive. The same
goes for using Knoppix's knx-hdinstall. I understand that I can install a live
system on an IDE hard drive, add the modules necessary to get SATA support
working, copy the whole thing over to the SATA drive and then run LILO to get
the system working on the SATA drive, but that sounds a bit too complicated
for someone as lazy as I am.

—
Nathan Oliphant

nathan@oliphantparts.org

Well, you can install Debian on just about anything if you bypass its normal
installer and use the debootstrap package. There are some tricks to using that,
however. On my Wiki pages I have described a technique for installing Debian
onto a set of disks under LVM (logical volume management), using nothing but
an LNX-BBC (www.lnx-bbc.org) and my network connection. So, if you have a
rescue disk like the LNX-BBC that can see and access the SATA hard drives, you
could follow basically the same procedure that I describe on my pages
(www.starshine.org/sysadmoin/DebootstrapInstallation). I will warn that this is
not easy. It is somewhat laborious and my step-by-step description doesn't go
into much explanation. It assumes expertise in partitioning (using fdisk),

mailto:fbarousse@piensa.com
mailto:nathan@oliphantparts.org
http://www.lnx-bbc.org
http://www.starshine.org/sysadmoin/DebootstrapInstallation

making and mounting filesystems.

—
Jim Dennis

jimd@starshine.org

Xandros Desktop OS (xandros.com), LindowsOS (lindows.com) and Libranet
GNU/Linux (libranet.com) are all Debian-based and maintain hardware
compatibility lists. You can look up your Serial ATA hardware on their Web sites.

—
Don Marti

info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jimd@starshine.org
http://xandros.com
http://lindows.com
http://libranet.com
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

JMP 5.1, Centrus Business Geographics Suite, AccuPoll and more.

JMP 5.1

Version 5.1 of JMP contains a Linux port of the desktop statistical analysis tool.
JMP 5.1 can be used to link statistical analysis dynamically with graphics for
data visualization. Modeling options are included to help users find root causes
of problems when there are multiple variables with nonlinear relationships,
when no models are identified and when underlying factors are not measured
in data. JMP includes Six Sigma, traditional and custom design of experiment
(DOE) tools. New statistical platforms are available for version 5.1 that enable
analysis of closely related data points as well as large amounts of data. JMP 5.1
supports Red Hat, Red Hat Advanced Server, SuSE, Mandrake and UnitedLinux
distributions.

SAS Institute, Inc., JMP Software, SAS Campus Drive, Cary, North Carolina 27513,
877-594-6567, www.jmp.com.

Centrus Business Geographics Suite

Group 1 Software announced upgrades to all of the products in its Centrus
business geographics suite. Centrus products incorporate embeddable
technology and a wide array of third-party data sources to solve operational
problems in which location is critical. The Centrus GeoStan system, which
corrects and standardizes address data with spatial information, now outputs
vendor segment identifiers linked to data from leading vendors. It also outputs
block suffixes using the US Census Bureau's TIGER 2002 data. Centrus
AddressBroker has been architecturally improved to handle running on
multiprocessor Linux machines. In addition, all Centrus products now run on
Red Hat Linux.

Group 1 Software, 4200 Parliament Place, Suite 600, Lanham, Maryland 20706,
888-413-6763, www.g1.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

AccuPoll

AccuPoll released its new multilingual electronic voting system, which combines
the transparency of touchscreen input with the documentation of a voter-
verified, printed paper record. The voting station guides voters through the
voting process, and votes are confirmed with an on-screen acknowledgement
and a paper Proof of Vote printed by the voting station. Once the vote is cast,
the AccuPoll system provides an independent, voter-verified audit trail that is
recorded simultaneously in multiple locations in both paper and electronic
formats. The AccuPoll system meets the requirements of the Help America Vote
Act of 2002, as well as accessibility requirements for disabled voters. AccuPoll
runs on nonproprietary hardware and open-source software.

AccuPoll Holdings Incorporated, 15101 Red Hill Avenue, Suite 220, Tustin,
California 92780, www.accupoll.com.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7312f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7312f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7312f2.large.jpg

VxWorks Compatibility Layer

LynuxWorks now is offering a VxWorks Compatibility Layer package to help
streamline the porting of VxWorks code to its LynxOS real-time operating
system (RTOS). Through the use of this package, applications originally written
for VxWorks' flat-memory model can be used with LynxOS, a multithreaded,
POSIX-compliant RTOS. The VxWorks Compatibility Layer maintains separate
name spaces under LynxOS by allowing multiple virtual VxWorks environments
to run simultaneously when required. The VxWorks porting kit also provides
recommendations for identifying certain types of code that may require special
attention. An extensive list of supported VxWorks calls and limitations on their
use also is provided.

LynuxWorks, 855 Embedded Way, San Jose, California 95138, 800-255-5969,
www.lynuxworks.com.

 X-treme Alerts Platform

724 Solutions, a provider of next-generation IP-based network and data
services, is offering its X-treme Alerts Platform (XAP) on Linux. XAP is an
actionable alerting platform tool that allows mobile operators to send easily
personalized, permission-based Short Message Service (SMS) and/or
Multimedia Message Service (MMS) alerts to subscribers. The latest version of
XAP, available in both hosted and in-house deployments, improves
performance and reduces TCO for mobile network operators. Additionally, XAP
can be used to stimulate adoption of SMS/telephony voting applications by
prompting the subscriber to cast a vote. XAP is part of 724 Solutions' X-treme
Mobility Suite, which provides a next-generation data network solution for
enabling differentiated, personalized premium data services.

724 Solutions, Inc., 4101 Yonge Street, Suite 702, Toronto, Ontario, Canada M2P
1N6, 416-226-2900, www.724.com.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7312f3.large.jpg

LC2430 Debian Laptop

LinuxCertified, Inc., has announced the release of its first Debian Certified
Laptop, the LC2430. The Debian model is the newest addition to the LC2000
laptop series, and it comes with preconfigured Debian GNU/Linux. Intended as
a UNIX workstation replacement, LC2430 comes with a SXGA+ screen, up to a
3.06GHz Pentium 4 processor (with hyperthreading turned on), up to 2GB of
RAM and up to an 80GB disk drive. It also features an ATI RADEON Mobility
9000 graphics card, 64MB of integrated VGA RAM, an Accelerated OpenGL card,
a DVD and CD-R/W combination drive and built-in 10/100 networking. The
methodology used to test the Debian GNU/Linux distribution on this laptop
focuses on installation, configuration and operation; details can be found on
the LinuxCertified Web site.

Linux Certified, Inc., 1072 South De Anza Boulevard, Suite A107-19, San Jose,
California 95129, 877-800-6873, www.linuxcertified.com.

https://secure2.linuxjournal.com/ljarchive/LJ/119/7312f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/119/7312f3.large.jpg

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/119/toc119.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Delivering Effective Presentations with OpenOffice.org's Impress
	Rob Reilly
	It's All Showbiz
	What Is Impress?
	Quick Presentation Creation
	Adding Slides, Text and Graphics
	Making Slide Handouts and Notes
	Running the Presentation
	Converting Slides to Web Pages
	Your Time in the Spotlight
	Wrap Up

	Eleven Tips for Moving to OpenOffice.org
	Bruce Byfield
	1. Don't Expect Features to Be Missing
	2. Don't Expect Features to Be in the Same Place
	3. Don't Expect to Need Training
	4. Don't Rely on Import/Export Filters for Exchanging Files
	5. Make a List of How to Do the Basic Functions That You Need
	6. Use the Available Help
	7. Start with the AutoPilot Features
	8. Learn to Use Styles
	9. Learn to Use the Navigator
	10. Look for Hidden Functionality
	11. Take Time before Making a Decision

	Renaissance—A Cross-Platform Development Tool for Linux and Mac OS
X
	Ludovic

Marcotte
	Installing Renaissance
	A Simple GNUstep Application
	Apple Mac OS X Port
	Translating the Application
	Conclusion

	The OASIS Standard for Office Documents: How All Users and Developers Can
Benefit
	Marco

Fioretti
	What Does It Look Like?
	What about End Users?
	Developer Tools
	Parsers and Libraries
	Event-Driven XML Processing
	Conclusion
	Acknowledgements

	Getting the Most from XMMS with Plugins
	Dave

Phillips
	Basics
	A Little More Advanced
	Finale

	Manipulating OOo Documents with Ruby
	James Britt
	OOo Extract
	The SXW File Format
	From Zip to REXML
	The REXML API
	XPath
	Toward a More General OOo API
	Summary

	GUI Scripting with Tcl/Tk
	Derek

Fountain
	An Overview of Tcl/Tk
	The Project
	Getting the Software
	Developing a Tcl/Tk Script
	A Look at Visual Tcl
	Building the Application
	The Shortcomings of Tcl/Tk
	Conclusion

	Building Panoramic Images in The GIMP
	Andrew

Burton
	Installation
	Using Pandora
	Your Mileage May Vary

	Designing Tip Windows
	Hugh Fisher

	Fast Convenient Mail for Travel: OfflineIMAP
	John Goerzen
	About OfflineIMAP
	Installing OfflineIMAP
	Basic Configuration
	Continuous Synchronization
	Synchronizing Multiple Accounts
	Boosting Performance
	User Interfaces
	Selecting Folders
	Changing Folder Names
	Synchronizing Two IMAP Servers
	Conclusion

	Power Management in Linux-Based Systems
	Srivatsa Vaddagiri
	Anand K. Santhanam
	Vijay Sukthankar
	Murali Iyer
	Two Power Management Standards
	Power Management Implementation
	Linux and Power Management
	APM
	Example Power State Transition
	Conclusion

	Bricolage Templates
	Reuven
 M.
Lerner
	Template Theory
	Modifying Templates
	Creating Templates
	Conclusion

	Kernel Korner
	What's New in the 2.6 Scheduler?
	Rick Lindsley
	The 2.4 Scheduler
	The 2.6 Scheduler
	Current and Future Work
	Interactivity
	Process Affinity
	Process Size
	Device Affinity
	Heavy Spikes but Short-Lived Tasks
	Light but Unbalanced Load
	NUMA
	Hyperthreading
	Summary

	Cooking with Linux
	Can't Get Enough Desktops!
	Marcel Gagné

	Paranoid Penguin
	Application Proxying with Zorp, Part I
	Mick Bauer
	Firewall Refresher Course
	Getting and Installing Zorp

	Linux for Suits
	The Fracturing Desktop
	Doc

Searls

	EOF
	Lest We Forget, Why Open Source Wins
	Chris DiBona

	Linux Power Tools by Roderick W. Smith
	Suresh Krishnan

	EmperorLinux Meteor Notebook
	Tony Steidler-Dennison

	Letters
	Will DMCA Lawyers Burn Books?
	ATI Open Source Friendly?
	Linux Vendor Helps Low-Budget Customer
	Linux-Powered Organ
	Why USB Devices Mount Read-Only
	Safely Allowing Root Access
	Photo of the Month: We're Historic
	Classified Ads, Please
	More on Controlling Devices, Please
	Radio Observatory Uses Linux
	New Site for Slashcode Webmasters
	Can US Federal Employees Contribute to GPL Projects?

	UpFront
	Agata: www.agata.org.br
	David A. Bandel

	Archimede: mcz.altervista.org
	David A. Bandel

	diff -u: What's New in Kernel Development
	Zack Brown

	Open eGov
	Doc Searls

	LJ Index—March 2004
	They Said It
	ZoneCheck: www.zonecheck.fr
	David A. Bandel

	Best of Technical Support
	Shutdown Doesn't
	Support for ISA Sound Card
	Keeping Bandwidth Bills Down
	Slackware on Serial ATA System?
	Best Software for Backup?
	Best Tool for a WordPerfect Expert?
	Hide That Password!
	Debian Install for SATA Drives?

	New Products
	JMP 5.1
	Centrus Business Geographics Suite
	AccuPoll
	VxWorks Compatibility Layer
	X-treme Alerts Platform
	LC2430 Debian Laptop

